Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create rich and fully interactive 3D visualizations of molecular data. Visualizations can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio Viewer. r3dmol includes an extensive API to manipulate the visualization after creation, and supports getting data out of the visualization into R. Based on the 3dmol.js and the htmlwidgets R package.
For a sequence of event occurence times, we are interested in finding subsequences in it that are too "regular". We define regular as being significantly different from a homogeneous Poisson process. The departure from the Poisson process is measured using a L1 distance. See Di and Perlman 2007 for more details.
This package provides a set of functions to build simple GUI controls for R functions. These are built on the tcltk package. Uses could include changing a parameter on a graph by animating it with a slider or a "doublebutton", up to more sophisticated control panels. Some functions for specific graphical tasks, referred to as cartoons', are provided.
This package provides a lightweight toolkit to validate new observations when computing their predictions with a predictive model. The validation process consists of two steps: (1) record relevant statistics and meta data of the variables in the original training data for the predictive model and (2) use these data to run a set of basic validation tests on the new set of observations.
This package provides a method for fitting the entire regularization path of the reluctant generalized additive model (RGAM) for linear regression, logistic, Poisson and Cox regression models. See Tay, J. K., and Tibshirani, R., (2019) <arXiv:1912.01808> for details.
Fetches NCBI data (RefSeq <https://www.ncbi.nlm.nih.gov/refseq/> database) and provides an environment to extract information at the level of gene, mRNA or protein accessions.
ARFIMA, in-mean, external regressors and various GARCH flavors, with methods for fit, forecast, simulation, inference and plotting.
This package creates interactive graphs with R'. It joins the data analysis power of R and the visualization libraries of JavaScript in one package.
Describes a new procedure of reducing items in a rating scale called Rating Scale Reduction (RSR). The new stop criterion in RSR procedure is added (stop global max). The function order is replaced by sort.list.
This package provides a list of functions for the statistical analysis and the post-processing of the Markov Chains simulated by ChronoModel (see <http://www.chronomodel.fr> for more information). ChronoModel is a friendly software to construct a chronological model in a Bayesian framework. Its output is a sampled Markov chain from the posterior distribution of dates component the chronology. The functions can also be applied to the analyse of mcmc output generated by Oxcal software.
This package provides a friendly, object oriented API for creating PowerPoint slide decks in R.
Bayesian geostatistical modeling of Gaussian processes using a reparameterized and marginalized posterior sampling (RAMPS) algorithm designed to lower autocorrelation in MCMC samples. Package performance is tuned for large spatial datasets.
Utilities to access Integrated Food Security Phase Classification (IPC) and Cadre Harmonisé (CH) food security data. Wrapper functions are available for all of the IPC-CH Public API (<https://docs.api.ipcinfo.org>) simplified and advanced endpoints to easily download the data in a clean and tidy format.
Summarise results from simulation studies and compute Monte Carlo standard errors of commonly used summary statistics. This package is modelled on the simsum user-written command in Stata (White I.R., 2010 <https://www.stata-journal.com/article.html?article=st0200>), further extending it with additional performance measures and functionality.
Wraps the Ollama <https://ollama.com> API, which can be used to communicate with generative large language models locally.
The Google FarmHash family of hash functions is used by the Google BigQuery data warehouse via the FARM_FINGERPRINT function. This package permits to calculate these hash digest fingerprints directly from R, and uses the included FarmHash files written by G. Pike and copyrighted by Google, Inc.
Implementation of the metalog distribution in R. The metalog distribution is a modern, highly flexible, data-driven distribution. Metalogs are developed by Keelin (2016) <doi:10.1287/deca.2016.0338>. This package provides functions to build these distributions from raw data. Resulting metalog objects are then useful for exploratory and probabilistic analysis.
QuantLib bindings are provided for R using Rcpp via an updated variant of the header-only Quantuccia project (put together initially by Peter Caspers) offering an essential subset of QuantLib (and now maintained separately for the calendaring subset). See the included file AUTHORS for a full list of contributors to both QuantLib and Quantuccia'. Note that this package provided an initial viability proof, current work is done (via approximately quarterly releases tracking QuantLib') in the smaller package qlcal which is generally preferred.
Collection of methods for rating matrix completion, which is a statistical framework for recommender systems. Another relevant application is the imputation of rating-scale survey data in the social and behavioral sciences. Note that matrix completion and imputation are synonymous terms used in different streams of the literature. The main functionality implements robust matrix completion for discrete rating-scale data with a low-rank constraint on a latent continuous matrix (Archimbaud, Alfons, and Wilms (2025) <doi:10.48550/arXiv.2412.20802>). In addition, the package provides wrapper functions for softImpute (Mazumder, Hastie, and Tibshirani, 2010, <https://www.jmlr.org/papers/v11/mazumder10a.html>; Hastie, Mazumder, Lee, Zadeh, 2015, <https://www.jmlr.org/papers/v16/hastie15a.html>) for easy tuning of the regularization parameter, as well as benchmark methods such as median imputation and mode imputation.
This package implements the robust functional analysis of variance (RoFANOVA), described in Centofanti et al. (2021) <arXiv:2112.10643>. It allows testing mean differences among groups of functional data by being robust against the presence of outliers.
Encapsulates functions to streamline calls from R to the REDCap API. REDCap (Research Electronic Data CAPture) is a web application for building and managing online surveys and databases developed at Vanderbilt University. The Application Programming Interface (API) offers an avenue to access and modify data programmatically, improving the capacity for literate and reproducible programming.
Validates estimates of (conditional) average treatment effects obtained using observational data by a) making it easy to obtain and visualize estimates derived using a large variety of methods (G-computation, inverse propensity score weighting, etc.), and b) ensuring that estimates are easily compared to a gold standard (i.e., estimates derived from randomized controlled trials). RCTrep offers a generic protocol for treatment effect validation based on four simple steps, namely, set-selection, estimation, diagnosis, and validation. RCTrep provides a simple dashboard to review the obtained results. The validation approach is introduced by Shen, L., Geleijnse, G. and Kaptein, M. (2023) <doi:10.21203/rs.3.rs-2559287/v2>.
Finds a robust instrumental variables estimator using a high breakdown point S-estimator of multivariate location and scatter matrix.
This package performs the Joint and Individual Variation Explained (JIVE) decomposition on a list of data sets when the data share a dimension, returning low-rank matrices that capture the joint and individual structure of the data [O'Connell, MJ and Lock, EF (2016) <doi:10.1093/bioinformatics/btw324>]. It provides two methods of rank selection when the rank is unknown, a permutation test and a Bayesian Information Criterion (BIC) selection algorithm. Also included in the package are three plotting functions for visualizing the variance attributed to each data source: a bar plot that shows the percentages of the variability attributable to joint and individual structure, a heatmap that shows the structure of the variability, and principal component plots.