Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an interface to Mapzen'-based APIs (including geocode.earth, Nextzen, and NYC GeoSearch) for geographic search and geocoding, isochrone calculation, and vector data to draw map tiles. See <https://www.mapzen.com/documentation/> for more information. The original Mapzen has gone out of business, but rmapzen can be set up to work with any provider who implements the Mapzen API.
This package provides an infrastructure for handling multiple R Markdown reports, including automated curation and time-stamping of outputs, parameterisation and provision of helper functions to manage dependencies.
Biodiversity is in crisis. The overarching aim of conservation is to preserve biodiversity patterns and processes. To this end, protected areas are established to buffer species and preserve biodiversity processes. But resources are limited and so protected areas must be cost-effective. This package contains tools to generate plans for protected areas (prioritizations), using spatially explicit targets for biodiversity patterns and processes. To obtain solutions in a feasible amount of time, this package uses the commercial Gurobi software (obtained from <https://www.gurobi.com/>). For more information on using this package, see Hanson et al. (2018) <doi:10.1111/2041-210X.12862>.
Resource Selection (Probability) Functions for use-availability wildlife data based on weighted distributions as described in Lele and Keim (2006) <doi:10.1890/0012-9658(2006)87%5B3021:WDAEOR%5D2.0.CO;2>, Lele (2009) <doi:10.2193/2007-535>, and Solymos & Lele (2016) <doi:10.1111/2041-210X.12432>.
Query functions to the GPlates <https://www.gplates.org/> Desktop Application and the GPlates Web Service <https://gws.gplates.org/> allow users to reconstruct past positions of geographic entities based on user-selected rotation models without leaving the R running environment. The online method (GPlates Web Service) makes the rotation of static plates, coastlines, and a low number of geographic coordinates available using nothing but an internet connection. The offline method requires an external installation of the GPlates Desktop Application, but allows the efficient batch rotation of thousands of coordinates, Simple Features (sf) and Spatial (sp) objects with custom reconstruction trees and partitioning polygons. Examples of such plate tectonic models are accessible via the chronosphere <https://cran.r-project.org/package=chronosphere>. This R extension is developed under the umbrella of the DFG (Deutsche Forschungsgemeinschaft) Research Unit TERSANE2 (For 2332, TEmperature Related Stressors in ANcient Extinctions).
Create, Plot and Compare Replication Timing Profiles. The method is described in Muller et al., (2014) <doi: 10.1093/nar/gkt878>.
Read and write las and laz binary file formats. The LAS file format is a public file format for the interchange of 3-dimensional point cloud data between data users. The LAS specifications are approved by the American Society for Photogrammetry and Remote Sensing <https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities>. The LAZ file format is an open and lossless compression scheme for binary LAS format versions 1.0 to 1.4 <https://laszip.org/>.
This package provides a tool for processing Articulate Assistant Advancedâ ¢ (AAA) ultrasound tongue imaging data and Carstens AG500/1 electro-magnetic articulographic data.
Combined with RRphylo', this package provides a powerful tool to analyse and visualise 3d models (surfaces and meshes) in a phylogenetically explicit context (Melchionna et al., 2024 <doi:10.1038/s42003-024-06710-8>).
Downloads, imports, and tidies time series data from the Australian Bureau of Statistics <https://www.abs.gov.au/>.
Aims to create a single isolated Miniconda and Python environment for reproducible pipeline scripts. The package provides utilities to run system command within the conda environment, making it easy to install, launch, manage, and stop Jupyter-lab'.
This package provides a Bayesian credible interval is interpreted with respect to posterior probability, and this interpretation is far more intuitive than that of a frequentist confidence interval. However, standard highest-density intervals can be wide due to between-subjects variability and tends to hide within-subject effects, rendering its relationship with the Bayes factor less clear in within-subject (repeated-measures) designs. This urgent issue can be addressed by using within-subject intervals in within-subject designs, which integrate four methods including the Wei-Nathoo-Masson (2023) <doi:10.3758/s13423-023-02295-1>, the Loftus-Masson (1994) <doi:10.3758/BF03210951>, the Nathoo-Kilshaw-Masson (2018) <doi:10.1016/j.jmp.2018.07.005>, and the Heck (2019) <doi:10.31234/osf.io/whp8t> interval estimates.
This package provides a flexible and easy-to-use interface for the Physiological Processes Predicting Growth (3-PG) model written in Fortran. The r3PG serves as a flexible and easy-to-use interface for the 3-PGpjs (monospecific, evenaged and evergreen forests) described in Landsberg & Waring (1997) <doi:10.1016/S0378-1127(97)00026-1> and the 3-PGmix (deciduous, uneven-aged or mixed-species forests) described in Forrester & Tang (2016) <doi:10.1016/j.ecolmodel.2015.07.010>.
Nonparametric maximum likelihood estimation methods for random coefficient binary response models and some related functionality for sequential processing of hyperplane arrangements. See J. Gu and R. Koenker (2020) <DOI:10.1080/01621459.2020.1802284>.
Downloads and parses SDF (Structural Description Format) and PDB (Protein Database) files for 3D rendering.
Despite the predominant use of R for data manipulation and various robust statistical calculations, in recent years, more people from various disciplines are beginning to use R for other purposes. In doing this seemlessly, further tools are needed users to easily and freely write in R for all kinds of purposes. The r2dictionary introduces a means for users to directly search for definitions of terms within the R environment.
R interface to access prices and market data with the Bloomberg Data License service from <https://www.bloomberg.com/professional/product/data-license/>. As a prerequisite, a valid Data License from Bloomberg is needed together with the corresponding SFTP credentials and whitelisting of the IP from which accessing the service. This software and its author are in no way affiliated, endorsed, or approved by Bloomberg or any of its affiliates. Bloomberg is a registered trademark.
Calculate the probability density functions (PDFs) for two threshold evidence accumulation models (EAMs). These are defined using the following Stochastic Differential Equation (SDE), dx(t) = v(x(t),t)*dt+D(x(t),t)*dW, where x(t) is the accumulated evidence at time t, v(x(t),t) is the drift rate, D(x(t),t) is the noise scale, and W is the standard Wiener process. The boundary conditions of this process are the upper and lower decision thresholds, represented by b_u(t) and b_l(t), respectively. Upper threshold b_u(t) > 0, while lower threshold b_l(t) < 0. The initial condition of this process x(0) = z where b_l(t) < z < b_u(t). We represent this as the relative start point w = z/(b_u(0)-b_l(0)), defined as a ratio of the initial threshold location. This package generates the PDF using the same approach as the python package it is based upon, PyBEAM by Murrow and Holmes (2023) <doi:10.3758/s13428-023-02162-w>. First, it converts the SDE model into the forwards Fokker-Planck equation dp(x,t)/dt = d(v(x,t)*p(x,t))/dt-0.5*d^2(D(x,t)^2*p(x,t))/dx^2, then solves this equation using the Crank-Nicolson method to determine p(x,t). Finally, it calculates the flux at the decision thresholds, f_i(t) = 0.5*d(D(x,t)^2*p(x,t))/dx evaluated at x = b_i(t), where i is the relevant decision threshold, either upper (i = u) or lower (i = l). The flux at each thresholds f_i(t) is the PDF for each threshold, specifically its PDF. We discuss further details of this approach in this package and PyBEAM publications. Additionally, one can calculate the cumulative distribution functions of and sampling from the EAMs.
External jars required for package RKEA.
The rkafkajars package collects all the external jars required for the rkafka package.
This package provides an easy way to report the results of ROC analysis, including: 1. an ROC curve. 2. the value of Cutoff, AUC (Area Under Curve), ACC (accuracy), SEN (sensitivity), SPE (specificity), PLR (positive likelihood ratio), NLR (negative likelihood ratio), PPV (positive predictive value), NPV (negative predictive value), PPA (percentage of positive accordance), NPA (percentage of negative accordance), TPA (percentage of total accordance), KAPPA (kappa value).
Efficient CRUD interface for the Airtable API <https://airtable.com/developers/web/api>, supporting batch requests and parallel encoding of large data sets.
Presentation-ready results tables for epidemiologists in an automated, reproducible fashion. The user provides the final analytical dataset and specifies the design of the table, with rows and/or columns defined by exposure(s), effect modifier(s), and estimands as desired, allowing to show descriptors and inferential estimates in one table -- bridging the rift between epidemiologists and their data, one table at a time. See Rothman (2017) <doi:10.1007/s10654-017-0314-3>.
Assess LCâ MS system performance by visualizing instrument log files and monitoring raw quality control samples within a project.