Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analyses sentiment of a sentence in English and assigns score to it. It can classify sentences to the following categories of sentiments:- Positive, Negative, very Positive, very negative, Neutral. For a vector of sentences, it counts the number of sentences in each category of sentiment.In calculating the score, negation and various degrees of adjectives are taken into consideration. It deals only with English sentences.
The regression-based (RB) approach is a method to test the missing data mechanism. This package contains two functions that test the type of missing data (Missing Completely At Random vs Missing At Random) on the basis of the RB approach. The first function applies the RB approach independently on each variable with missing data, using the completely observed variables only. The second function tests the missing data mechanism globally (on all variables with missing data) with the use of all available information. The algorithm is adapted both to continuous and categorical data.
Translation of the MATLAB program Carb (Nathan and Mauz 2008 <DOI:10.1016/j.radmeas.2007.12.012>; Mauz and Hoffmann 2014) for dose rate modelling for carbonate-rich samples in the context of trapped charged dating (e.g., luminescence dating) applications.
This package provides fast, persistent (side-effect-free) stack, queue and deque (double-ended-queue) data structures. While deques include a superset of functionality provided by queues, in these implementations queues are more efficient in some specialized situations. See the documentation for rstack, rdeque, and rpqueue for details.
Display spatial data with interactive maps powered by the open- source JavaScript library Leaflet (see <https://leafletjs.com/>). Maps can be rendered in a web browser or displayed in the HTML viewer pane of RStudio'. This package is designed to be easy to use and can create complex maps with vector and raster data, web served map tiles and interface elements.
CausalEGM is a general causal inference framework for estimating causal effects by encoding generative modeling, which can be applied in both discrete and continuous treatment settings. A description of the methods is given in Liu (2022) <arXiv:2212.05925>.
Frequentist sequential meta-analysis based on Trial Sequential Analysis (TSA) in programmed in Java by the Copenhagen Trial Unit (CTU). The primary function is the calculation of group sequential designs for meta-analysis to be used for planning and analysis of both prospective and retrospective sequential meta-analyses to preserve type-I-error control under sequential testing. RTSA includes tools for sample size and trial size calculation for meta-analysis and core meta-analyses methods such as fixed-effect and random-effects models and forest plots. TSA is described in Wetterslev et. al (2008) <doi:10.1016/j.jclinepi.2007.03.013>. The methods for deriving the group sequential designs are based on Jennison and Turnbull (1999, ISBN:9780849303166).
Rcmdr interface to the sos package. The plug-in renders the sos searching functionality easily accessible via the Rcmdr menus. It also simplifies the task of performing multiple searches and subsequently obtaining the union or the intersection of the results.
Tu & Zhou (1999) <doi:10.1002/(SICI)1097-0258(19991030)18:20%3C2749::AID-SIM195%3E3.0.CO;2-C> showed that comparing the means of populations whose data-generating distributions are non-negative with excess zero observations is a problem of great importance in the analysis of medical cost data. In the same study, Tu & Zhou discuss that it can be difficult to control type-I error rates of general-purpose statistical tests for comparing the means of these particular data sets. This package allows users to perform a modified bootstrap-based t-test that aims to better control type-I error rates in these situations.
The JSON format is ubiquitous for data interchange, and the simdjson library written by Daniel Lemire (and many contributors) provides a high-performance parser for these files which by relying on parallel SIMD instruction manages to parse these files as faster than disk speed. See the <doi:10.48550/arXiv.1902.08318> paper for more details about simdjson'. This package parses JSON from string, file, or remote URLs under a variety of settings.
Providing just one primary function, readit uses a set of reasonable heuristics to apply the appropriate reader function to the given file path. As long as the data file has an extension, and the data is (or can be coerced to be) rectangular, readit() can probably read it.
Robust kernel center matrix, robust kernel cross-covariance operator for kernel unsupervised methods, kernel canonical correlation analysis, influence function of identifying significant outliers or atypical objects from multimodal datasets. Alam, M. A, Fukumizu, K., Wang Y.-P. (2018) <doi:10.1016/j.neucom.2018.04.008>. Alam, M. A, Calhoun, C. D., Wang Y.-P. (2018) <doi:10.1016/j.csda.2018.03.013>.
Nonparametric maximum likelihood estimation methods for random coefficient binary response models and some related functionality for sequential processing of hyperplane arrangements. See J. Gu and R. Koenker (2020) <DOI:10.1080/01621459.2020.1802284>.
Estimates the total, between-, and within-cluster Spearman rank correlations for continuous and ordinal clustered data. See Tu et al. (2024) <DOI:10.1002/sim.10326> for details.
Allows the user to conduct randomization-based inference for a wide variety of experimental scenarios. The package leverages a potential outcomes framework to output randomization-based p-values and null intervals for test statistics geared toward any estimands of interest, according to the specified null and alternative hypotheses. Users can define custom randomization schemes so that the randomization distributions are accurate for their experimental settings. The package also creates visualizations of randomization distributions and can test multiple test statistics simultaneously.
Assessing and comparing risk prediction rules for clustered data. The method is based on the paper: Rosner B, Qiu W, and Lee MLT.(2013) <doi: 10.1007/s10985-012-9240-6>.
The Evolutionary Rate Matrix is a variance-covariance matrix which describes both the rates of trait evolution and the evolutionary correlation among multiple traits. This package has functions to estimate these parameters using Bayesian MCMC. It is possible to test if the pattern of evolutionary correlations among traits has changed between predictive regimes painted along the branches of the phylogenetic tree. Regimes can be created a priori or estimated as part of the MCMC under a joint estimation approach. The package has functions to run MCMC chains, plot results, evaluate convergence, and summarize posterior distributions.
Helps to fit thermal performance curves (TPCs). rTPC contains 26 model formulations previously used to fit TPCs and has helper functions to set sensible start parameters, upper and lower parameter limits and estimate parameters useful in downstream analyses, such as cardinal temperatures, maximum rate and optimum temperature. See Padfield et al. (2021) <doi:10.1111/2041-210X.13585>.
This package provides a programmatic interface to the web service methods provided by Global Biotic Interactions (GloBI) (<https://www.globalbioticinteractions.org/>). GloBI provides access to spatial-temporal species interaction records from sources all over the world. rglobi provides methods to search species interactions by location, interaction type, and taxonomic name.
The provided package implements the statistical tests for the functional repeated measures analysis problem (Kurylo and Smaga, 2023, <arXiv:2306.03883>). These procedures enable us to verify the overall hypothesis regarding equality, as well as hypotheses for pairwise comparisons (i.e., post hoc analysis) of mean functions corresponding to repeated experiments.
SEA performs simultaneous feature-set testing for (gen)omics data. It tests the unified null hypothesis and controls the family-wise error rate for all possible pathways. The unified null hypothesis is defined as: "The proportion of true features in the set is less than or equal to a threshold." Family-wise error rate control is provided through use of closed testing with Simes test. There are some practical functions to play around with the pathways of interest.
Generate causally-simulated data to serve as ground truth for evaluating methods in causal discovery and effect estimation. The package provides tools to assist in defining functions based on specified edges, and conversely, defining edges based on functions. It enables the generation of data according to these predefined functions and causal structures. This is particularly useful for researchers in fields such as artificial intelligence, statistics, biology, medicine, epidemiology, economics, and social sciences, who are developing a general or a domain-specific methods to discover causal structures and estimate causal effects. Data simulation adheres to principles of structural causal modeling. Detailed methodologies and examples are documented in our vignette, available at <https://htmlpreview.github.io/?https://github.com/herdiantrisufriyana/rcausim/blob/master/doc/causal_simulation_exemplar.html>.
Compute an exact CI for the population mean under a random effects model. The routines implement the algorithm described in Michael, Thronton, Xie, and Tian (2017) <https://haben-michael.github.io/research/Exact_Inference_Meta.pdf>.
This package provides a comprehensive suite of statistical tools for Quality Management, designed around the Define, Measure, Analyze, Improve, and Control (DMAIC) cycle used in Six Sigma methodology. Based on the discontinued CRAN package qualitytools', this package refactors its original design by incorporating R6 object-oriented programming for increased flexibility and performance. It replaces traditional graphics with modern, interactive visualizations using ggplot2 and plotly'. Built on tidyverse principles, it simplifies data manipulation and visualization, offering an intuitive approach to quality science.