Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows work with Management API for load counters, segments, filters, user permissions and goals list from Yandex Metrica, Reporting API allows you to get information about the statistics of site visits and other data without using the web interface, Logs API allows to receive non-aggregated data and Compatible with Google Analytics Core Reporting API v3 allows receive information about site traffic and other data using field names from Google Analytics Core API. For more information see official documents <https://yandex.ru/dev/metrika/doc/api2/concept/about-docpage>.
This package performs kernel based estimates on in-memory raster images from the raster package. These kernel estimates include local means variances, modes, and quantiles. All results are in the form of raster images, preserving original resolution and projection attributes.
The implemented R6 class SCM aims to simplify working with structural causal models. The missing data mechanism can be defined as a part of the structural model. The class contains methods for 1) defining a structural causal model via functions, text or conditional probability tables, 2) printing basic information on the model, 3) plotting the graph for the model using packages igraph or qgraph', 4) simulating data from the model, 5) applying an intervention, 6) checking the identifiability of a query using the R packages causaleffect and dosearch', 7) defining the missing data mechanism, 8) simulating incomplete data from the model according to the specified missing data mechanism and 9) checking the identifiability in a missing data problem using the R package dosearch'. In addition, there are functions for running experiments and doing counterfactual inference using simulation.
ARFIMA, in-mean, external regressors and various GARCH flavors, with methods for fit, forecast, simulation, inference and plotting.
This package provides a method generate() is implemented in this package for the random generation of vector time series according to models obtained by RMAWGEN', vars or other packages. This package was created to generalize the algorithms of the RMAWGEN package for the analysis and generation of any environmental vector time series.
Interface to the yacas computer algebra system (<http://www.yacas.org/>).
This package provides datasets related to the Star Trek fictional universe and functions for working with the data. The package also provides access to real world datasets based on the televised series and other related licensed media productions. It interfaces with the Star Trek API (STAPI) (<http://stapi.co/>), Memory Alpha (<https://memory-alpha.fandom.com/wiki/Portal:Main>), and Memory Beta (<https://memory-beta.fandom.com/wiki/Main_Page>) to retrieve data, metadata and other information relating to Star Trek. It also contains several local datasets covering a variety of topics. The package also provides functions for working with data from other Star Trek-related R data packages containing larger datasets not stored in rtrek'.
This package provides a single method implementing multiple approaches to generate pseudo-random vectors whose components sum up to one (see, e.g., Maziero (2015) <doi:10.1007/s13538-015-0337-8>). The components of such vectors can for example be used for weighting objectives when reducing multi-objective optimisation problems to a single-objective problem in the socalled weighted sum scalarisation approach.
The goal of Rthingsboard is to provide interaction with the API of ThingsBoard (<https://thingsboard.io/>), an open-source IoT platform for device management, data collection, processing and visualization.
Implementation of the methods described in the paper with the above title: Langsrud, Ã . (2019) <doi:10.1007/s11222-018-9848-9>. The package can be used to generate synthetic or hybrid continuous microdata, and the relationship to the original data can be controlled in several ways. A function for replacing suppressed tabular cell frequencies with decimal numbers is included.
Focused on linear, quadratic and cubic regression models, it has a function for calculating the models, obtaining a list with their parameters, and a function for making the graphs for the respective models.
Test for effects of both individual factors and their interaction on replicated spatial patterns in a two factorial design, as explained in Ramon et al. (2016) <doi:10.1111/ecog.01848>.
Create, Plot and Compare Replication Timing Profiles. The method is described in Muller et al., (2014) <doi: 10.1093/nar/gkt878>.
This package provides tools for simulating synthetic survival data using a variety of methods, including kernel density estimation, parametric distribution fitting, and bootstrap resampling techniques for a desired sample size.
Implementation of Robust Regression tailored to deal with Asymmetric noise Distribution, which was originally proposed by Takeuchi & Bengio & Kanamori (2002) <doi:10.1162/08997660260293300>. In addition, this implementation is extended as introducing potential feature regularization by LASSO etc.
Allow function for using TGStat Stat API and TGStat Search API', for more details see <https://api.tgstat.ru/docs/ru/start/intro.html>. TGStat provide telegram channel analytics data.
An RStudio addin providing shortcuts for writing in Markdown'. This package provides a series of functions that allow the user to be more efficient when using Markdown'. For example, you can select a word, and put it in bold or in italics, or change the alignment of elements inside you Rmd. The idea is to map all the functionalities from remedy on keyboard shortcuts, so that it provides an interface close to what you can find in any other text editor.
This package provides tools for randomization-based inference. Current focus is on the d^2 omnibus test of differences of means following Hansen and Bowers (2008) <doi:10.1214/08-STS254> . This test is useful for assessing balance in matched observational studies or for analysis of outcomes in block-randomized experiments.
Used for generating randomized community matrices under strict range cohesion. The package can handle data where species occurrence are recorded across sites ordered along gradients such as elevation and latitude, as well as species occurrences recorded on spatial grids with known geographic coordinates.
Interface for multiple data sources, such as the `EDDS` API <https://evds2.tcmb.gov.tr/index.php?/evds/userDocs> of the Central Bank of the Republic of Türkiye and the `FRED` API <https://fred.stlouisfed.org/docs/api/fred/> of the Federal Reserve Bank. Both data providers require API keys for access, which users can easily obtain by creating accounts on their respective websites. The package provides caching ability with the selection of periods to increase the speed and efficiency of requests. It combines datasets requested from different sources, helping users when the data has common frequencies. While combining data frames whenever possible, it also keeps all requested data available as separate data frames to increase efficiency.
Robust Location and Scatter Estimation and Robust Multivariate Analysis with High Breakdown Point for Incomplete Data (missing values) (Todorov et al. (2010) <doi:10.1007/s11634-010-0075-2>).
Implementation of the algorithms (with minor modifications) to correct bias in quantitative DNA methylation analyses as described by Moskalev et al. (2011) <doi:10.1093/nar/gkr213>. Publication: Kapsner et al. (2021) <doi:10.1002/ijc.33681>.
Enables binary package installations on Linux distributions. Provides access to RStudio public repositories at <https://packagemanager.posit.co>, and transparent management of system requirements without administrative privileges. Currently supported distributions are CentOS / RHEL', and several RHEL derivatives ('Rocky Linux', AlmaLinux', Oracle Linux', and Amazon Linux'), openSUSE / SLES', Debian', and Ubuntu LTS.
This package provides access to ArcGIS geoprocessing tools by building an interface between R and the ArcPy Python side-package via the reticulate package.