Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Exchange rate for Kenya Shilling against other currencies, US DOLLAR, EURO, STERLING POUND, Tanzania Shilling, Uganda Shilling.
The Ryan-Holm step-down Bonferroni or Sidak procedure is to control the family-wise (experiment-wise) type I error rate in the multiple comparisons. This procedure provides the adjusting p-values and adjusting CIs. The methods used in this package are referenced from John Ludbrook (2000) <doi:10.1046/j.1440-1681.2000.03223.x>.
This package provides functions for risk management and portfolio investment of securities with practical tools for data processing and plotting. Moreover, it contains functions which perform the COS Method, an option pricing method based on the Fourier-cosine series (Fang, F. (2008) <doi:10.1137/080718061>).
Automatic coding of open-ended responses to the Cognitive Reflection Test (CRT), a widely used class of tests in cognitive science and psychology that assess the tendency to override an initial intuitive (but incorrect) answer and engage in reflection to reach a correct solution. The package standardizes CRT response coding across datasets in cognitive psychology, decision-making, and related fields. Automated coding reduces manual effort and improves reproducibility by limiting variability from subjective interpretation of open-ended responses. The package supports automatic coding and machine scoring for the original English-language CRT (Frederick, 2005) <doi:10.1257/089533005775196732>, CRT4 and CRT7 (Toplak et al., 2014) <doi:10.1080/13546783.2013.844729>, CRT-long (Primi et al., 2016) <doi:10.1002/bdm.1883>, and CRT-2 (Thomson & Oppenheimer, 2016) <doi:10.1017/s1930297500007622>.
R access to the Sequential Monte Carlo Template Classes by Johansen <doi:10.18637/jss.v030.i06> is provided. At present, four additional examples have been added, and the first example from the JSS paper has been extended. Further integration and extensions are planned.
S3 and S4 functions are implemented for spatial multi-site stochastic generation of daily time series of temperature and precipitation. These tools make use of Vector AutoRegressive models (VARs). The weather generator model is then saved as an object and is calibrated by daily instrumental "Gaussianized" time series through the vars package tools. Once obtained this model, it can it can be used for weather generations and be adapted to work with several climatic monthly time series.
Create and combine HTML and PDF reports from within R. Possibility to design tables and listings for reporting and also include R plots.
This package provides functions and examples for testing hypothesis about the population mean and variance on samples drawn by r-size biased sampling schemes.
Ensmallen is a templated C++ mathematical optimization library (by the MLPACK team) that provides a simple set of abstractions for writing an objective function to optimize. Provided within are various standard and cutting-edge optimizers that include full-batch gradient descent techniques, small-batch techniques, gradient-free optimizers, and constrained optimization. The RcppEnsmallen package includes the header files from the Ensmallen library and pairs the appropriate header files from armadillo through the RcppArmadillo package. Therefore, users do not need to install Ensmallen nor Armadillo to use RcppEnsmallen'. Note that Ensmallen is licensed under 3-Clause BSD, Armadillo starting from 7.800.0 is licensed under Apache License 2, RcppArmadillo (the Rcpp bindings/bridge to Armadillo') is licensed under the GNU GPL version 2 or later. Thus, RcppEnsmallen is also licensed under similar terms. Note that Ensmallen requires a compiler that supports C++14 and Armadillo 10.8.2 or later.
Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).
This package provides a collection of functions for basic database and document management operations such as add, get, list access or delete. Every cdbFunction() gets and returns a list() containing the connection setup. Such a list can be generated by cdbIni().
This package performs random projection using Johnson-Lindenstrauss (JL) Lemma (see William B.Johnson and Joram Lindenstrauss (1984) <doi:10.1090/conm/026/737400>). Random Projection is a dimension reduction technique, where the data in the high dimensional space is projected into the low dimensional space using JL transform. The original high dimensional data matrix is multiplied with the low dimensional projection matrix which results in reduced matrix. The projection matrix can be generated using the projection function that is independent to the original data. Then finally apply the classification task on the projected data.
This package produces Shiny applications for different types of popular functional data analyses. The functional data analyses are implemented in the refund package, then refund.shiny reads in the refund object and implements an object-specific set of plots based on the object class using S3.
An extension for roxygen2 to embed Shinylive applications in the package documentation.
After defining an R6 class, R62S3 is used to automatically generate optional S3/S4 generics and methods for dispatch. Also allows piping for R6 objects.
The rank distance correlation <doi:10.1080/01621459.2020.1782223> is computed. Included also is a function to perform permutation based testing.
Access and handle APIs that use the international open311 GeoReport v2 standard for civic issue tracking <https://wiki.open311.org/GeoReport_v2/>. Retrieve civic service types and request data. Select and add available open311 endpoints and jurisdictions. Implicitly supports custom queries and open311 extensions. Requires a minimal number of hard dependencies while still allowing the integration in common R formats ('xml2', tibble', sf').
This package provides functions to safely map from a vector of keys to a vector of values, determine properties of a given relation, or ensure a relation conforms to a given type, such as many-to-many, one-to-many, injective, surjective, or bijective. Permits default return values for use similar to a vectorised switch statement, as well as safely handling large vectors, NAs, and duplicate mappings.
Fits a multivariate value-added model (VAM), see Broatch, Green, and Karl (2018) <doi:10.32614/RJ-2018-033> and Broatch and Lohr (2012) <doi:10.3102/1076998610396900>, with normally distributed test scores and a binary outcome indicator. A pseudo-likelihood approach, Wolfinger (1993) <doi:10.1080/00949659308811554>, is used for the estimation of this joint generalized linear mixed model. The inner loop of the pseudo-likelihood routine (estimation of a linear mixed model) occurs in the framework of the EM algorithm presented by Karl, Yang, and Lohr (2013) <DOI:10.1016/j.csda.2012.10.004>. This material is based upon work supported by the National Science Foundation under grants DRL-1336027 and DRL-1336265.
Image data used as examples in the loon R package.
Using a CSV, LaTeX and R to easily build attractive resumes.
Risk ratios and risk differences are estimated using regression models that allow for binary, categorical, and continuous exposures and confounders. Implemented are marginal standardization after fitting logistic models (g-computation) with delta-method and bootstrap standard errors, Miettinen's case-duplication approach (Schouten et al. 1993, <doi:10.1002/sim.4780121808>), log-binomial (Poisson) models with empirical variance (Zou 2004, <doi:10.1093/aje/kwh090>), binomial models with starting values from Poisson models (Spiegelman and Hertzmark 2005, <doi:10.1093/aje/kwi188>), and others.
Read Statistical Data and Metadata Exchange (SDMX) XML data. This the main transmission format used in official statistics. Data can be imported from local SDMX-ML files or a SDMX web-service and will be read in as is into a dataframe object. The RapidXML C++ library <https://rapidxml.sourceforge.net/> is used to parse the XML data.
Inference of relatedness coefficients from a bi-allelic genotype matrix using a Maximum Likelihood estimation, Laporte, F., Charcosset, A. and Mary-Huard, T. (2017) <doi:10.1111/biom.12634>.