Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-sectional data, by splitting the inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.
This package provides a group of functions to scrape data from different websites, for academic purposes.
This package provides functions to implement the stability controlled quasi-experiment (SCQE) approach to study the effects of newly adopted treatments that were not assigned at random. This package contains tools to help users avoid making statistical assumptions that rely on infeasible assumptions. Methods developed in Hazlett (2019) <doi:10.1002/sim.8717>.
This package provides tools for using the StreamCat and LakeCat API and interacting with the StreamCat and LakeCat database. Convenience functions in the package wrap the API for StreamCat on <https://api.epa.gov/StreamCat/streams/metrics>.
Computes sample size for Student's t-test and for the Wilcoxon-Mann-Whitney test for categorical data. The t-test function allows paired and unpaired (balanced / unbalanced) designs as well as homogeneous and heterogeneous variances. The Wilcoxon function allows for ties.
This package implements the discrete nonlinear filter (DNF) of Kitagawa (1987) <doi:10.1080/01621459.1987.10478534> to a wide class of stochastic volatility (SV) models with return and volatility jumps following the work of Bégin and Boudreault (2021) <doi:10.1080/10618600.2020.1840995> to obtain likelihood evaluations and maximum likelihood parameter estimates. Offers several built-in SV models and a flexible framework for users to create customized models by specifying drift and diffusion functions along with an arrival distribution for the return and volatility jumps. Allows for the estimation of factor models with stochastic volatility (e.g., heteroskedastic volatility CAPM) by incorporating expected return predictors. Also includes functions to compute filtering and prediction distribution estimates, to simulate data from built-in and custom SV models with jumps, and to forecast future returns and volatility values using Monte Carlo simulation from a given SV model.
Spatial versions of Regression Discontinuity Designs (RDDs) are becoming increasingly popular as tools for causal inference. However, conducting state-of-the-art analyses often involves tedious and time-consuming steps. This package offers comprehensive functionalities for executing all required spatial and econometric tasks in a streamlined manner. Moreover, it equips researchers with tools for performing essential placebo and balancing checks comprehensively. The fact that researchers do not have to rely on APIs of external GIS software ensures replicability and raises the standard for spatial RDDs.
Applies re-sampled kernel density method to detect vote fraud. It estimates the proportion of coarse vote-shares in the observed data relative to the null hypothesis of no fraud.
This package provides functions to generate and analyze spatially-explicit individual-based multistate movements in rivers, heterogeneous and homogeneous spaces. This is done by incorporating landscape bias on local behaviour, based on resistance rasters. Although originally conceived and designed to simulate trajectories of species constrained to linear habitats/dendritic ecological networks (e.g. river networks), the simulation algorithm is built to be highly flexible and can be applied to any (aquatic, semi-aquatic or terrestrial) organism, independently on the landscape in which it moves. Thus, the user will be able to use the package to simulate movements either in homogeneous landscapes, heterogeneous landscapes (e.g. semi-aquatic animal moving mainly along rivers but also using the matrix), or even in highly contrasted landscapes (e.g. fish in a river network). The algorithm and its input parameters are the same for all cases, so that results are comparable. Simulated trajectories can then be used as mechanistic null models (Potts & Lewis 2014, <DOI:10.1098/rspb.2014.0231>) to test a variety of Movement Ecology hypotheses (Nathan et al. 2008, <DOI:10.1073/pnas.0800375105>), including landscape effects (e.g. resources, infrastructures) on animal movement and species site fidelity, or for predictive purposes (e.g. road mortality risk, dispersal/connectivity). The package should be relevant to explore a broad spectrum of ecological phenomena, such as those at the interface of animal behaviour, management, landscape and movement ecology, disease and invasive species spread, and population dynamics.
Fits single-species (univariate) and multi-species (multivariate) non-spatial and spatial abundance models in a Bayesian framework using Markov Chain Monte Carlo (MCMC). Spatial models are fit using Nearest Neighbor Gaussian Processes (NNGPs). Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Fits single-species and multi-species spatial and non-spatial versions of generalized linear mixed models (Gaussian, Poisson, Negative Binomial), N-mixture models (Royle 2004 <doi:10.1111/j.0006-341X.2004.00142.x>) and hierarchical distance sampling models (Royle, Dawson, Bates (2004) <doi:10.1890/03-3127>). Multi-species spatial models are fit using a spatial factor modeling approach with NNGPs for computational efficiency.
Efficient regression analysis under general two-phase sampling, where Phase I includes error-prone data and Phase II contains validated data on a subset.
Implementation of a model-based bootstrap approach for testing whether two formulations are similar. The package provides a function for fitting a pharmacokinetic model to time-concentration data and comparing the results for all five candidate models regarding the Residual Sum of Squares (RSS). The candidate set contains a First order, Hixson-Crowell, Higuchi, Weibull and a logistic model. The assessment of similarity implemented in this package is performed regarding the maximum deviation of the profiles. See Moellenhoff et al. (2018) <doi:10.1002/sim.7689> for details.
This package provides a simple to use summary function that can be used with pipes and displays nicely in the console. The default summary statistics may be modified by the user as can the default formatting. Support for data frames and vectors is included, and users can implement their own skim methods for specific object types as described in a vignette. Default summaries include support for inline spark graphs. Instructions for managing these on specific operating systems are given in the "Using skimr" vignette and the README.
Computes scores of outlyingness for data sets consisting of nominal variables and includes various evaluation metrics for assessing performance of outlier identification algorithms producing scores of outlyingness. The scores of nominal outlyingness are computed based on the framework of Costa and Papatsouma (2025) <doi:10.48550/arXiv.2408.07463>.
Automatically sets the value of options("width") when the terminal emulator is resized. The functions of this package only work if R is compiled for Unix systems and it is running interactively in a terminal emulator.
Processing and analysis of field collected or simulated sprinkler system catch data (depths) to characterize irrigation uniformity and efficiency using standard and other measures. Standard measures include the Christiansen coefficient of uniformity (CU) as found in Christiansen, J.E.(1942, ISBN:0138779295, "Irrigation by Sprinkling"); and distribution uniformity (DU), potential efficiency of the low quarter (PELQ), and application efficiency of the low quarter (AELQ) that are implementations of measures of the same notation in Keller, J. and Merriam, J.L. (1978) "Farm Irrigation System Evaluation: A Guide for Management" <https://pdf.usaid.gov/pdf_docs/PNAAG745.pdf>. spreval::DU.lh is similar to spreval::DU but is the distribution uniformity of the low half instead of low quarter as in DU. spreval::PELQT is a version of spreval::PELQ adapted for traveling systems instead of lateral move or solid-set sprinkler systems. The function spreval::eff is analogous to the method used to compute application efficiency for furrow irrigation presented in Walker, W. and Skogerboe, G.V. (1987,ISBN:0138779295, "Surface Irrigation: Theory and Practice"),that uses piecewise integration of infiltrated depth compared against soil-moisture deficit (SMD), when the argument "target" is set equal to SMD. The other functions contained in the package provide graphical representation of sprinkler system uniformity, and other standard univariate parametric and non-parametric statistical measures as applied to sprinkler system catch depths. A sample data set of field test data spreval::catchcan (catch depths) is provided and is used in examples and vignettes. Agricultural systems emphasized, but this package can be used for landscape irrigation evaluation, and a landscape (turf) vignette is included as an example application.
These functions were developed within SECFISH project (Strengthening regional cooperation in the area of fisheries data collection-Socio-economic data collection for fisheries, aquaculture and the processing industry at EU level). They are aimed at identifying correlations between costs and transversal variables by metier using individual vessel data and for disaggregating variable costs from fleet segment to metier level.
It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>.
Store persistent and synchronized data from shiny inputs within the browser. Refresh shiny applications and preserve user-inputs over multiple sessions. A database-like storage format is implemented using Dexie.js <https://dexie.org>, a minimal wrapper for IndexedDB'. Transfer browser link parameters to shiny input or output values. Store app visitor views, likes and followers.
Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
This package provides a tool for producing synthetic versions of microdata containing confidential information so that they are safe to be released to users for exploratory analysis. The key objective of generating synthetic data is to replace sensitive original values with synthetic ones causing minimal distortion of the statistical information contained in the data set. Variables, which can be categorical or continuous, are synthesised one-by-one using sequential modelling. Replacements are generated by drawing from conditional distributions fitted to the original data using parametric or classification and regression trees models. Data are synthesised via the function syn() which can be largely automated, if default settings are used, or with methods defined by the user. Optional parameters can be used to influence the disclosure risk and the analytical quality of the synthesised data. For a description of the implemented method see Nowok, Raab and Dibben (2016) <doi:10.18637/jss.v074.i11>. Functions to assess identity and attribute disclosure for the original and for the synthetic data are included in the package, and their use is illustrated in a vignette on disclosure (Practical Privacy Metrics for Synthetic Data).
Simulate complex traits given a SNP genotype matrix and model parameters (the desired heritability, number of causal loci, and either the true ancestral allele frequencies used to generate the genotypes or the mean kinship for a real dataset). Emphasis on avoiding common biases due to the use of estimated allele frequencies. The code selects random loci to be causal, constructs coefficients for these loci and random independent non-genetic effects, and can optionally generate random group effects. Traits can follow three models: random coefficients, fixed effect sizes, and infinitesimal (multivariate normal). GWAS method benchmarking functions are also provided. Described in Yao and Ochoa (2022) <doi:10.1101/2022.03.25.485885>.
The Brazilian system for diploma registration and validation on technical and superior courses are managing by Sistec platform, see <https://sistec.mec.gov.br/>. This package provides tools for Brazilian institutions to update the student's registration and make data analysis about their situation, retention and drop out.
Interactively play a game of sokoban ,which has nine game levels.Sokoban is a type of transport puzzle, in which the player pushes boxes or crates around in a warehouse, trying to get them to storage locations.