Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Acquire hourly meteorological data from stations located all over the world. There is a wealth of data available, with historic weather data accessible from nearly 30,000 stations. The available data is automatically downloaded from a data repository and processed into a tibble for the exact range of years requested. A relative humidity approximation is provided using the August-Roche-Magnus formula, which was adapted from Alduchov and Eskridge (1996) <doi:10.1175%2F1520-0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2>.
The aim of the spatial downscaling is to increase the spatial resolution of the gridded geospatial input data. This package contains two deep learning based spatial downscaling methods, super-resolution deep residual network (SRDRN) (Wang et al., 2021 <doi:10.1029/2020WR029308>) and UNet (Ronneberger et al., 2015 <doi:10.1007/978-3-319-24574-4_28>), along with a statistical baseline method bias correction and spatial disaggregation (Wood et al., 2004 <doi:10.1023/B:CLIM.0000013685.99609.9e>). The SRDRN and UNet methods are implemented to optionally account for cyclical temporal patterns in case of spatio-temporal data. For more details of the methods, see Sipilä et al. (2025) <doi:10.48550/arXiv.2512.13753>.
Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition". This package provides another option of direct estimation using weight. This package also features alpha and beta parameter estimation on calculating process of small area. Those methods are Newton-Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
The notion of power index has been widely used in literature to evaluate the influence of individual players (e.g., voters, political parties, nations, stockholders, etc.) involved in a collective decision situation like an electoral system, a parliament, a council, a management board, etc., where players may form coalitions. Traditionally this ranking is determined through numerical evaluation. More often than not however only ordinal data between coalitions is known. The package socialranking offers a set of solutions to rank players based on a transitive ranking between coalitions, including through CP-Majority, ordinal Banzhaf or lexicographic excellence solution summarized by Tahar Allouche, Bruno Escoffier, Stefano Moretti and Meltem à ztürk (2020, <doi:10.24963/ijcai.2020/3>).
An R data package containing setlists from all Bruce Springsteen concerts over 1973-2021. Also includes all his song details such as lyrics and albums. Data extracted from: <http://brucebase.wikidot.com/>.
Create short sprint acceleration-velocity (AVP) and force-velocity (FVP) profiles and predict kinematic and kinetic variables using the timing-gate split times, laser or radar gun data, tether devices data, as well as the data provided by the GPS and LPS monitoring systems. The modeling method utilized in this package is based on the works of Furusawa K, Hill AV, Parkinson JL (1927) <doi: 10.1098/rspb.1927.0035>, Greene PR. (1986) <doi: 10.1016/0025-5564(86)90063-5>, Chelly SM, Denis C. (2001) <doi: 10.1097/00005768-200102000-00024>, Clark KP, Rieger RH, Bruno RF, Stearne DJ. (2017) <doi: 10.1519/JSC.0000000000002081>, Samozino P. (2018) <doi: 10.1007/978-3-319-05633-3_11>, Samozino P. and Peyrot N., et al (2022) <doi: 10.1111/sms.14097>, Clavel, P., et al (2023) <doi: 10.1016/j.jbiomech.2023.111602>, Jovanovic M. (2023) <doi: 10.1080/10255842.2023.2170713>, and Jovanovic M., et al (2024) <doi: 10.3390/s24092894>.
Builds, evaluates and validates a nomogram with survey data and right-censored outcomes. As described in Capanu (2015) <doi:10.18637/jss.v064.c01>, the package contains functions to create the nomogram, validate it using bootstrap, as well as produce the calibration plots.
Calculate the statistical power to detect clusters using kernel-based spatial relative risk functions that are estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
Enables the complete removal of various Shiny components, such as inputs, outputs and modules. It also aids in the removal of observers that have been created in dynamically created modules.
Inference on panel data using spatiotemporal partially-observed Markov process (SpatPOMP) models. The spatPomp package extends pomp to include algorithms taking advantage of the spatial structure in order to assist with handling high dimensional processes. See Asfaw et al. (2024) <doi:10.48550/arXiv.2101.01157> for further description of the package.
Machine learning is widely used in information-systems design. Yet, training algorithms on imbalanced datasets may severely affect performance on unseen data. For example, in some cases in healthcare, financial, or internet-security contexts, certain sub-classes are difficult to learn because they are underrepresented in training data. This R package offers a flexible and efficient solution based on a new synthetic average neighborhood sampling algorithm ('SANSA'), which, in contrast to other solutions, introduces a novel â placementâ parameter that can be tuned to adapt to each datasets unique manifestation of the imbalance. More information about the algorithm's parameters can be found at Nasir et al. (2022) <https://murtaza.cc/SANSA/>.
Plays the game of Snakes and Ladders and has tools for analyses. The tools included allow you to find the average moves to win, frequency of each square, importance of the snakes and the ladders, the most common square and the plotting of the game played.
Routines for computing different types of linear estimators, based on instrumental variables (IVs), including the semi-parametric Stein-like (SPS) estimator, originally introduced by Judge and Mittelhammer (2004) <DOI:10.1198/016214504000000430>.
Implementation of statistical methods for the estimation of toroidal diffusions. Several diffusive models are provided, most of them belonging to the Langevin family of diffusions on the torus. Specifically, the wrapped normal and von Mises processes are included, which can be seen as toroidal analogues of the Ornstein-Uhlenbeck diffusion. A collection of methods for approximate maximum likelihood estimation, organized in four blocks, is given: (i) based on the exact transition probability density, obtained as the numerical solution to the Fokker-Plank equation; (ii) based on wrapped pseudo-likelihoods; (iii) based on specific analytic approximations by wrapped processes; (iv) based on maximum likelihood of the stationary densities. The package allows the replicability of the results in Garcà a-Portugués et al. (2019) <doi:10.1007/s11222-017-9790-2>.
This package provides functions for creating and annotating a composite plot in ggplot2'. Offers background themes and shortcut plotting functions that produce figures that are appropriate for the format of scientific journals. Some methods are described in Min and Zhou (2021) <doi:10.3389/fgene.2021.802894>.
This package implements spatial error estimation and permutation-based variable importance measures for predictive models using spatial cross-validation and spatial block bootstrap.
This package creates static / animated / interactive visualisations embeddable in R Markdown documents. It implements an R-to-JavaScript transpiler and enables users to write JavaScript applications using the syntax of R.
Explore synesthesia consistency test data, calculate consistency scores, and classify participant data as valid or invalid.
Standardized accuracy (staccuracy) is a framework for expressing accuracy scores such that 50% represents a reference level of performance and 100% is a perfect prediction. The staccuracy package provides tools for creating staccuracy functions as well as some recommended staccuracy measures. It also provides functions for some classic performance metrics such as mean absolute error (MAE), root mean squared error (RMSE), and area under the receiver operating characteristic curve (AUCROC), as well as their winsorized versions when applicable.
This package implements a group-bridge penalized function-on-scalar regression model proposed by Wang et al. (2023) <doi:10.1111/biom.13684>, to simultaneously estimate functional coefficient and recover the local sparsity.
Takes as input a stable oxygen isotope (d18O) profile measured in growth direction (D) through a shell + uncertainties in both variables (d18O_err & D_err). It then models the seasonality in the d18O record by fitting a combination of a growth and temperature sine wave to year-length chunks of the data (see Judd et al., (2018) <doi:10.1016/j.palaeo.2017.09.034>). This modeling is carried out along a sliding window through the data and yields estimates of the day of the year (Julian Day) and local growth rate for each data point. Uncertainties in both modeling routine and the data itself are propagated and pooled to obtain a confidence envelope around the age of each data point in the shell. The end result is a shell chronology consisting of estimated ages of shell formation relative to the annual cycle with their uncertainties. All formulae in the package serve this purpose, but the user can customize the model (e.g. number of days in a year and the mineralogy of the shell carbonate) through input parameters.
This package contains an implementation of StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2021) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.
Use stem analysis data to reconstructing tree growth and carbon accumulation. Users can independently or in combination perform a number of standard tasks for any tree species. (i) Age class determination. (ii) The cumulative growth, mean annual increment, and current annual increment of diameter at breast height (DBH) with bark, tree height, and stem volume with bark are estimated. (iii) Tree biomass and carbon storage estimation from volume and allometric models are calculated. (iv) Height-diameter relationship is fitted with nonlinear models, if diameter at breast height (DBH) or tree height are available, which can be used to retrieve tree height and diameter at breast height (DBH). <https://github.com/forestscientist/StemAnalysis>.