Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides drop-in replacements for functions from the stringr package, with the same user interface. These functions have no external dependencies and can be copied directly into your package code using the staticimports package.
Easily integrate and control Lottie animations within shiny applications', without the need for idiosyncratic expression or use of JavaScript'. This includes utilities for generating animation instances, controlling playback, manipulating animation properties, and more. For more information on Lottie', see: <https://airbnb.io/lottie/#/>. Additionally, see the official Lottie GitHub repository at <https://github.com/airbnb/lottie>.
This package provides tools for retrieving, organizing, and analyzing environmental data from the System Wide Monitoring Program of the National Estuarine Research Reserve System <https://cdmo.baruch.sc.edu/>. These tools address common challenges associated with continuous time series data for environmental decision making.
This package provides standardized effect decomposition (direct, indirect, and total effects) for three major structural equation modeling frameworks: lavaan', piecewiseSEM', and plspm'. Automatically handles zero-effect variables, generates publication-ready ggplot2 visualizations, and returns both wide-format and long-format effect tables. Supports effect filtering, multi-model object inputs, and customizable visualization parameters. For a general overview of the methods used in this package, see Rosseel (2012) <doi:10.18637/jss.v048.i02> and Lefcheck (2016) <doi:10.1111/2041-210X.12512>.
Implementation of evolutionary fuzzy systems for the data mining task called "subgroup discovery". In particular, the algorithms presented in this package are: M. J. del Jesus, P. Gonzalez, F. Herrera, M. Mesonero (2007) <doi:10.1109/TFUZZ.2006.890662> M. J. del Jesus, P. Gonzalez, F. Herrera (2007) <doi:10.1109/MCDM.2007.369416> C. J. Carmona, P. Gonzalez, M. J. del Jesus, F. Herrera (2010) <doi:10.1109/TFUZZ.2010.2060200> C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, D. Elizondo (2015) <doi:10.1016/j.ins.2014.11.030> It also provide a Shiny App to ease the analysis. The algorithms work with data sets provided in KEEL, ARFF and CSV format and also with data.frame objects.
This package performs automatic creation of short forms of scales with an ant colony optimization algorithm and a Tabu search. As implemented in the package, the ant colony algorithm randomly selects items to build a model of a specified length, then updates the probability of item selection according to the fit of the best model within each set of searches. The algorithm continues until the same items are selected by multiple ants a given number of times in a row. On the other hand, the Tabu search changes one parameter at a time to be either free, constrained, or fixed while keeping track of the changes made and putting changes that result in worse fit in a "tabu" list so that the algorithm does not revisit them for some number of searches. See Leite, Huang, & Marcoulides (2008) <doi:10.1080/00273170802285743> for an applied example of the ant colony algorithm, and Marcoulides & Falk (2018) <doi:10.1080/10705511.2017.1409074> for an applied example of the Tabu search.
This package contains the function CUUimpute() which performs model-based clustering and imputation simultaneously.
Load Avro Files into Apache Spark using sparklyr'. This allows to read files from Apache Avro <https://avro.apache.org/>.
The Semi Parametric Piecewise Distribution blends the Generalized Pareto Distribution for the tails with a kernel based interior.
Generate an invoice containing a header with invoice number and businesses details. The invoice table contains any of: salary, one-liner costs, grouped costs. Under the table signature and bank account details appear. Pages are numbered when more than one. Source .json and .Rmd files are editable in the app. A .csv file with raw data can be downloaded. This package includes functions for getting exchange rates between currencies based on quantmod (Ryan and Ulrich, 2023 <https://CRAN.R-project.org/package=quantmod>).
Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models. See Benjamin M. Taylor, Barry S. Rowlingson (2017) <doi:10.18637/jss.v077.i04>.
The aim of this package is to offer new methodology for unit-level small area models under transformations and limited population auxiliary information. In addition to this new methodology, the widely used nested error regression model without transformations (see "An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data" by Battese, Harter and Fuller (1988) <doi:10.1080/01621459.1988.10478561>) and its well-known uncertainty estimate (see "The estimation of the mean squared error of small-area estimators" by Prasad and Rao (1990) <doi:10.1080/01621459.1995.10476570>) are provided. In this package, the log transformation and the data-driven log-shift transformation are provided. If a transformation is selected, an appropriate method is chosen depending on the respective input of the population data: Individual population data (see "Empirical best prediction under a nested error model with log transformation" by Molina and Martà n (2018) <doi:10.1214/17-aos1608>) but also aggregated population data (see "Estimating regional income indicators under transformations and access to limited population auxiliary information" by Würz, Schmid and Tzavidis <unpublished>) can be entered. Especially under limited data access, new methodologies are provided in saeTrafo. Several options are available to assess the used model and to judge, present and export its results. For a detailed description of the package and the methods used see the corresponding vignette.
Facilitate the evaluation of forecasts in a convenient framework based on data.table. It allows user to to check their forecasts and diagnose issues, to visualise forecasts and missing data, to transform data before scoring, to handle missing forecasts, to aggregate scores, and to visualise the results of the evaluation. The package mostly focuses on the evaluation of probabilistic forecasts and allows evaluating several different forecast types and input formats. Find more information about the package in the Vignettes as well as in the accompanying paper, <doi:10.48550/arXiv.2205.07090>.
Simple implementation of Semantic Versioning 2.0.0 ('SemVer') on the vctrs package. This package provides a simple way to create, compare, and manipulate semantic versions in R. It is designed to be lightweight and easy to use.
This package provides a collection of functions for reading soil data from U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) and National Cooperative Soil Survey (NCSS) databases.
Analysis of multivariate environmental high frequency data by Self-Organizing Map and k-means clustering algorithms. By means of the graphical user interface it provides a comfortable way to elaborate by self-organizing map algorithm rather big datasets (txt files up to 100 MB ) obtained by environmental high-frequency monitoring by sensors/instruments. The functions present in the package are based on kohonen and openair packages implemented by functions embedding Vesanto et al. (2001) <http://www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdf> heuristic rules for map initialization parameters, k-means clustering algorithm and map features visualization. Cluster profiles visualization as well as graphs dedicated to the visualization of time-dependent variables Licen et al. (2020) <doi:10.4209/aaqr.2019.08.0414> are provided.
An interface to spdep to integrate with sf objects and the tidyverse'.
This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.
This package provides functions for statistical analysis of point processes.
Draw syntenic relationships between genome assemblies. There are 3 functions which take a tab delimited file containing alignment data for syntenic blocks between genomes to produce either a linear alignment plot, an evolution highway style plot, or a painted ideogram representing syntenic relationships. There is also a function to convert alignment data in the DESCHRAMBLER/inferCAR format to the required data structure.
Generate programmable surveys using markdown and R code chunks. Surveys are composed of two files: a survey.qmd Quarto file defining the survey content (pages, questions, etc), and an app.R file defining a shiny app with global settings (libraries, database configuration, etc.) and server configuration options (e.g., conditional skipping / display, etc.). Survey data collected from respondents is stored in a PostgreSQL database. Features include controls for conditional skip logic (skip to a page based on an answer to a question), conditional display logic (display a question based on an answer to a question), a customizable progress bar, and a wide variety of question types, including multiple choice (single choice and multiple choices), select, text, numeric, multiple choice buttons, text area, and dates. Because the surveys render into a shiny app, designers can also leverage the reactive capabilities of shiny to create dynamic and interactive surveys.
Efficient Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian estimation of dynamic survival models with shrinkage priors. Details on the algorithms used are provided in Wagner (2011) <doi:10.1007/s11222-009-9164-5>, Bitto and Frühwirth-Schnatter (2019) <doi:10.1016/j.jeconom.2018.11.006> and Cadonna et al. (2020) <doi:10.3390/econometrics8020020>.
It visualizes data along an Archimedean spiral <https://en.wikipedia.org/wiki/Archimedean_spiral>, makes so-called spiral graph or spiral chart. It has two major advantages for visualization: 1. It is able to visualize data with very long axis with high resolution. 2. It is efficient for time series data to reveal periodic patterns.
An interface to access data from Substack publications via API. Users can fetch the latest, top, search for specific posts, or retrieve a single post by its slug. This functionality is useful for developers and researchers looking to analyze Substack content or integrate it into their applications. For more information, visit the API documentation at <https://substackapi.dev/introduction>.