Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simple class to hold contents of a SMET file as specified in Bavay (2021) <https://code.wsl.ch/snow-models/meteoio/-/blob/master/doc/SMET_specifications.pdf>. There numerical meteorological measurements are all based on MKS (SI) units and timestamp is standardized to UTC time.
This package provides a Package for selecting variables for the joint modeling of mean and dispersion (including models for mixture experiments) based on hypothesis testing and the quality of model's fit. In each iteration of the selection process, a criterion for checking the goodness of fit is used as a filter for choosing the terms that will be evaluated by a hypothesis test. Pinto & Pereira (2021) <arXiv:2109.07978>.
Dual interfaces, graphical and programmatic, designed for intuitive applications of Multilevel Regression and Poststratification (MRP). Users can apply the method to a variety of datasets, from electronic health records to sample survey data, through an end-to-end Bayesian data analysis workflow. The package provides robust tools for data cleaning, exploratory analysis, flexible model building, and insightful result visualization. For more details, see Si et al. (2020) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2020002/article/00003-eng.pdf?st=iF1_Fbrh> and Si (2025) <doi:10.1214/24-STS932>.
Set of tools to find coherent patterns in gene expression (microarray) data using a Bayesian Sparse Latent Factor Model (SLFM) <DOI:10.1007/978-3-319-12454-4_15>. Considerable effort has been put to build a fast and memory efficient package, which makes this proposal an interesting and computationally convenient alternative to study patterns of gene expressions exhibited in matrices. The package contains the implementation of two versions of the model based on different mixture priors for the loadings: one relies on a degenerate component at zero and the other uses a small variance normal distribution for the spike part of the mixture.
Collection (syllogi in greek) of real and fictitious data sets for teaching purposes. The datasets were manually entered by the author from the respective references as listed in the individual dataset documentation. The fictions datasets are the creation of the author, that he has found useful for teaching statistics.
SparseGrid is a package to create sparse grids for numerical integration, based on code from www.sparse-grids.de.
This package implements the sparse clustering methods of Witten and Tibshirani (2010): "A framework for feature selection in clustering"; published in Journal of the American Statistical Association 105(490): 713-726.
This package provides a software package help user to create virtual species for species distribution modelling. It includes several methods to help user to create virtual species distribution map. Those maps can be used for Species Distribution Modelling (SDM) study. SDM use environmental data for sites of occurrence of a species to predict all the sites where the environmental conditions are suitable for the species to persist, and may be expected to occur.
Uncertainty propagation analysis in spatial environmental modelling following methodology described in Heuvelink et al. (2007) <doi:10.1080/13658810601063951> and Brown and Heuvelink (2007) <doi:10.1016/j.cageo.2006.06.015>. The package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model outputs. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is accommodated for. The MC realizations may be used as input to the environmental models called from R, or externally.
Forms queries to submit to the Cleveland Federal Reserve Bank web site's financial stress index data site. Provides query functions for both the composite stress index and the components data. By default the download includes daily time series data starting September 25, 1991. The functions return a class of either type easing or cfsi which contain a list of items related to the query and its graphical presentation. The list includes the time series data as an xts object. The package provides four lattice time series plots to render the time series data in a manner similar to the bank's own presentation.
Evaluation of control charts by means of the zero-state, steady-state ARL (Average Run Length) and RL quantiles. Setting up control charts for given in-control ARL. The control charts under consideration are one- and two-sided EWMA, CUSUM, and Shiryaev-Roberts schemes for monitoring the mean or variance of normally distributed independent data. ARL calculation of the same set of schemes under drift (in the mean) are added. Eventually, all ARL measures for the multivariate EWMA (MEWMA) are provided.
Datasets detailing the results, castaways, and events of each season of Survivor for the US, Australia, South Africa, New Zealand, and the UK. This includes details on the cast, voting history, immunity and reward challenges, jury votes, boot order, advantage details, and episode ratings. Use this for analysis of trends and statistics of the game.
Annotates single-cell and spatial-transcriptomic (ST) data using context-matching marker datasets. It creates a unified marker list (`Markers_list`) from multiple sources: built-in curated databases ('Cellmarker2', PanglaoDB', scIBD', TCellSI', PCTIT', PCTAM'), Seurat objects with cell labels, or user-provided Excel tables. SlimR first uses adaptive machine learning for parameter optimization, and then offers two automated annotation approaches: cluster-based and per-cell'. Cluster-based annotation assigns one label per cluster, expression-based probability calculation, and AUC validation. Per-cell annotation assigns labels to individual cells using three scoring methods with adaptive thresholds and ratio-based confidence filtering, plus optional UMAP spatial smoothing, making it ideal for heterogeneous clusters and rare cell types. The package also supports semi-automated workflows with heatmaps, feature plots, and combined visualizations for manual annotation. For more details, see Kabacoff (2020, ISBN:9787115420572).
An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the caret package, other packages, or custom functions.
Allows TailwindCSS to be used in Shiny apps with just-in-time compiling, custom css with @apply directive, and custom tailwind configurations.
Estimates sparse regression models (i.e., with few non-zero coefficients) in high-dimensional multi-task learning and transfer learning settings, as proposed by Rauschenberger et al. (2025) <https://orbilu.uni.lu/handle/10993/63425>.
Streamlined workflow from deconvolution of bulk RNA-seq data to downstream differential expression and gene-set enrichment analysis. Provide various visualization functions.
Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation detailed in Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Spatial models are fit using either Gaussian processes or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Provides functionality for data integration of multiple single-species occupancy data sets using a joint likelihood framework. Details on data integration are given in Miller, Pacifici, Sanderlin, and Reich (2019) <doi:10.1111/2041-210X.13110>. Details on single-species and multi-species models are found in MacKenzie, Nichols, Lachman, Droege, Royle, and Langtimm (2002) <doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2> and Dorazio and Royle <doi:10.1198/016214505000000015>, respectively.
This package provides functions that wrap HTML Bootstrap components code to enable the design and layout of informative landing home pages for Shiny applications. This can lead to a better user experience for the users and writing less HTML for the developer.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130> and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>.
This package provides a powerful and flexible tool for visualizing proportional data across spatially resolved contexts. By combining the concepts of scatter plots and stacked bar charts, scatterbar allows users to create scattered bar chart plots, which effectively display the proportions of different categories at each (x, y) location. This visualization is particularly useful for applications where understanding the distribution of categories across spatial coordinates is essential. This package features automatic determination of optimal scaling factors based on data, customizable scaling and padding options for both x and y axes, flexibility to specify custom colors for each category, options to customize the legend title, and integration with ggplot2 for robust and high-quality visualizations. For more details, see Velazquez et al. (2024) <doi:10.1101/2024.08.14.606810>.
It helps in determination of sample size for estimating population mean or proportion under simple random sampling with or without replacement and stratified random sampling without replacement. When prior information on the population coefficient of variation (CV) is unavailable, then a preliminary sample is drawn to estimate the CV which is used to compute the final sample size. If the final size exceeds the preliminary sample size, then additional units are drawn; otherwise, the preliminary sample size is considered as final sample size. For stratified random sampling without replacement design, it also calculates the sample size in each stratum under different allocation methods for estimation of population mean and proportion based upon the availability of prior information on sizes of the strata, standard deviations of the strata and costs of drawing a sampling unit in the strata.For details on sampling methodology, see, Cochran (1977) "Sampling Techniques" <https://archive.org/details/samplingtechniqu0000coch_t4x6>.
Create a side-by-side view of raster(image)s with an interactive slider to switch between regions of the images. This can be especially useful for image comparison of the same region at different time stamps.
L2 penalized logistic regression for both continuous and discrete predictors, with forward stagewise/forward stepwise variable selection procedure.