Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Feature screening is a powerful tool in processing ultrahigh dimensional data. It attempts to screen out most irrelevant features in preparation for a more elaborate analysis. Xu and Chen (2014)<doi:10.1080/01621459.2013.879531> proposed an effective screening method SMLE, which naturally incorporates the joint effects among features in the screening process. This package provides an efficient implementation of SMLE-screening for high-dimensional linear, logistic, and Poisson models. The package also provides a function for conducting accurate post-screening feature selection based on an iterative hard-thresholding procedure and a user-specified selection criterion.
Read CODAR's SeaSonde High-Frequency Radar spectra files, compute radial metrics, and generate plots for spectra and antenna pattern data. Implementation is based in technical manuals, publications and patents, please refer to the following documents for more information: Barrick and Lipa (1999) <https://codar.com/images/about/patents/05990834.PDF>; CODAR Ocean Sensors (2002) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/FirstOrder_Settings.pdf>; Lipa et al. (2006) <doi:10.1109/joe.2006.886104>; Paolo et al. (2007) <doi:10.1109/oceans.2007.4449265>; CODAR Ocean Sensors (2009a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_AntennaPattern.pdf>; CODAR Ocean Sensors (2009b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/GuidesToFileFormats/File_CrossSpectraReduced.pdf>; CODAR Ocean Sensors (2016a) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/File_Cross_Spectra_V6.pdf>; CODAR Ocean Sensors (2016b) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/File_Formats/FIle_Reduced_Spectra.pdf>; CODAR Ocean Sensors (2016c) <http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Manuals_Documentation_Release_8/Application_Guides/Guide_SpectraPlotterMap.pdf>; Bushnell and Worthington (2022) <doi:10.25923/4c5x-g538>.
Computes multivariate normal (MVN) densities, and samples from MVN distributions, when the covariance or precision matrix is sparse.
Estimates split-half reliabilities for scoring algorithms of cognitive tasks and questionnaires. The splithalfr supports researcher-provided scoring algorithms, with six vignettes illustrating how on included datasets. The package provides four splitting methods (first-second, odd-even, permutated, Monte Carlo), the option to stratify splits by task design, a number of reliability coefficients, the option to sub-sample data, and bootstrapped confidence intervals.
This package provides functions and data sets inspired by data sharpening - data perturbation to achieve improved performance in nonparametric estimation, as described in Choi, E., Hall, P. and Rousson, V. (2000). Capabilities for enhanced local linear regression function and derivative estimation are included, as well as an asymptotically correct iterated data sharpening estimator for any degree of local polynomial regression estimation. A cross-validation-based bandwidth selector is included which, in concert with the iterated sharpener, will often provide superior performance, according to a median integrated squared error criterion. Sample data sets are provided to illustrate function usage.
Package including additional modules for interactive ShinyItemAnalysis application for the psychometric analysis of educational tests, psychological assessments, health-related and other types of multi-item measurements, or ratings from multiple raters.
Seven different methods for multiple testing problems. The SGoF-type methods (see for example, Carvajal Rodrà guez et al., 2009 <doi:10.1186/1471-2105-10-209>; de Uña à lvarez, 2012 <doi:10.1515/1544-6115.1812>; Castro Conde et al., 2015 <doi:10.1177/0962280215597580>) and the BH and BY false discovery rate controlling procedures.
This package provides a fast, consistent tool for plotting and facilitating the analysis of stratigraphic and sedimentological data. Taking advantage of the flexible plotting tools available in R, SDAR uses stratigraphic and sedimentological data to produce detailed graphic logs for outcrop sections and borehole logs. These logs can include multiple features (e.g., bed thickness, lithology, samples, sedimentary structures, colors, fossil content, bioturbation index, gamma ray logs) (Johnson, 1992, <ISSN 0037-0738>).
This package provides a collection of functions to search and download street view imagery ('Mapilary <https://www.mapillary.com/developer/api-documentation>) and to extract, quantify, and visualize visual features. Moreover, there are functions provided to generate Qualtrics survey in TXT format using the collection of street views for various research purposes.
This package provides influence function-based methods to evaluate a longitudinal surrogate marker in a censored time-to-event outcome setting, with plug-in and targeted maximum likelihood estimation options. Details are described in: Agniel D and Parast L (2025). "Robust Evaluation of Longitudinal Surrogate Markers with Censored Data." Journal of the Royal Statistical Society: Series B <doi:10.1093/jrsssb/qkae119>. A tutorial for this package can be found at <https://www.laylaparast.com/survivalsurrogate> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/survivalsurrogateApp/>.
This package provides a set of statistical tools for spatio-temporal data exploration. Includes simple plotting functions, covariance calculations and computations similar to principal component analysis for spatio-temporal data. Can use both dataframes and stars objects for all plots and computations. For more details refer Spatio-Temporal Statistics with R (Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie, 2019, ISBN:9781138711136).
Improves the interpretation of the Standardized Precipitation Index under changing climate conditions. The package uses the nonstationary approach proposed in Blain et al. (2022) <doi:10.1002/joc.7550> to detect trends in rainfall quantities and to quantify the effect of such trends on the probability of a drought event occurring.
This package provides robust estimation for spatial error model to presence of outliers in the residuals. The classical estimation methods can be influenced by the presence of outliers in the data. We proposed a robust estimation approach based on the robustified likelihood equations for spatial error model (Vural Yildirim & Yeliz Mert Kantar (2020): Robust estimation approach for spatial error model, Journal of Statistical Computation and Simulation, <doi:10.1080/00949655.2020.1740223>).
Statistical models for specific coronavirus disease 2019 use cases at German local health authorities. All models of Statistical modelling for infectious disease management smidm are part of the decision support toolkit in the EsteR project. More information is published in Sonja Jäckle, Rieke Alpers, Lisa Kühne, Jakob Schumacher, Benjamin Geisler, Max Westphal "'EsteR â A Digital Toolkit for COVID-19 Decision Support in Local Health Authorities" (2022) <doi:10.3233/SHTI220799> and Sonja Jäckle, Elias Röger, Volker Dicken, Benjamin Geisler, Jakob Schumacher, Max Westphal "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions" (2021) <doi:10.3390/ijerph18179166>.
Assigns a score projection from 0 to 1 between a given in vivo stage and each single cluster from an in vitro dataset. The score is assigned based on the the fraction of specific markers of the in vivo stage that are conserved in the in vitro clusters <https://github.com/ScialdoneLab>.
This is a compendium of C++ routines useful for Bayesian statistics. We steal other people's C++ code, repurpose it, and export it so developers of R packages can use it in their C++ code. We actually don't steal anything, or claim that Thomas Bayes did, but copy code that is compatible with our GPL 3 licence, fully acknowledging the authorship of the original code.
Constructs gene regulatory networks from single-cell gene expression data using the PANDA (Passing Attributes between Networks for Data Assimilation) algorithm.
This package implements the SoftBart model of described by Linero and Yang (2018) <doi:10.1111/rssb.12293>, with the optional use of a sparsity-inducing prior to allow for variable selection. For usability, the package maintains the same style as the BayesTree package.
Create correlation networks using St. Nicolas House Analysis ('SNHA'). The package can be used for visualizing multivariate data similar to Principal Component Analysis or Multidimensional Scaling using a ranking approach. In contrast to MDS and PCA', SNHA uses a network approach to explore interacting variables. For details see Hermanussen et. al. 2021', <doi:10.3390/ijerph18041741>.
Performance evaluation metrics for supervised and unsupervised machine learning, statistical learning and artificial intelligence applications. Core computations are implemented in C++ for scalability and efficiency.
Enhance the bookmarkable state feature of shiny with additional customization such as storage location and storage repositories leveraging the pins package.
Ratings, votes, swear words and sentiments are analysed for the show SouthPark through a Shiny application after web scraping from IMDB and the website <https://southpark.fandom.com/wiki/South_Park_Archives>.
This package provides an interface to shiny inputs used for filtering vectors, data.frames, and other objects. S7'-based implementation allows for seamless extensibility.
Estimates the proportion of treatment effect on a censored primary outcome that is explained by the treatment effect on a censored surrogate outcome/event. All methods are described in detail in Parast, et al (2020) "Assessing the Value of a Censored Surrogate Outcome" <doi:10.1007/s10985-019-09473-1> and Wang et al (2025) "Model-free Approach to Evaluate a Censored Intermediate Outcome as a Surrogate for Overall Survival" <doi:10.1002/sim.70268>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogateoutcome>.