Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides utilities for conducting specification curve analyses (Simonsohn, Simmons & Nelson (2020, <doi: 10.1038/s41562-020-0912-z>) or multiverse analyses (Steegen, Tuerlinckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including functions to setup, run, evaluate, and plot all specifications.
This package provides tools for predicting ICU length of stay and assessing ICU efficiency. It is based on the methodologies proposed by Peres et al. (2022, 2023), which utilize data-driven approaches for modeling and validation, offering insights into ICU performance and patient outcomes. References: Peres et al. (2022)<https://pubmed.ncbi.nlm.nih.gov/35988701/>, Peres et al. (2023)<https://pubmed.ncbi.nlm.nih.gov/37922007/>. More information: <https://github.com/igor-peres/ICU-Length-of-Stay-Prediction>.
Regression-based ranking of pathogen strains with respect to their contributions to natural epidemics, using demographic and genetic data sampled in the curse of the epidemics. This package also includes the GMCPIC test.
Analysis of multi environment data of plant breeding experiments following the analyses described in Malosetti, Ribaut, and van Eeuwijk (2013), <doi:10.3389/fphys.2013.00044>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris. Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
This package provides functions for constructing mathematical models of dynamical systems from measured input-output data.
This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. Reliability indicators such as reliability, maintainability, availability, BMP-failure rate, RG-failure rate, mean time to failure and mean time to repair are available as well. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.
Model stacking is an ensemble technique that involves training a model to combine the outputs of many diverse statistical models, and has been shown to improve predictive performance in a variety of settings. stacks implements a grammar for tidymodels'-aligned model stacking.
Inspired by space-time regressions often performed to assess the expansion of the Neolithic from the Near East to Europe (Pinhasi et al. 2005 <doi:10.1371/journal.pbio.0030410>). Test for significant correlations between the (earliest) radiocarbon dates of archaeological sites and their respective distances from a hypothetical center of origin. Both ordinary least squares (OLS) and reduced major axis (RMA) methods are supported (Russell et al. 2014 <doi:10.1371/journal.pone.0087854>). It is also possible to iterate over many sites to identify the most likely origin.
Alternative to using withCallingHandlers() in the simple case of catch and rethrow. The `%!%` operator evaluates the expression on its left hand side, and if an error occurs, the right hand side is used to construct a new error that embeds the original error.
An R Shiny application dedicated to the intra-site spatial analysis of piece-plotted archaeological remains, making the two and three-dimensional spatial exploration of archaeological data as user-friendly as possible. Documentation about SEAHORS is provided by the vignette included in this package and by the companion scientific paper: Royer, Discamps, Plutniak, Thomas (2023, PCI Archaeology, <doi:10.5281/zenodo.7674698>).
Sparse arrays interpreted as multivariate polynomials. Uses disordR discipline (Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2210.10848>.
Provide data generation and estimation tools for the multivariate scale mixtures of normal presented in Lange and Sinsheimer (1993) <doi:10.2307/1390698>, the multivariate scale mixtures of skew-normal presented in Zeller, Lachos and Vilca (2011) <doi:10.1080/02664760903406504>, the multivariate skew scale mixtures of normal presented in Louredo, Zeller and Ferreira (2021) <doi:10.1007/s13571-021-00257-y> and the multivariate scale mixtures of skew-normal-Cauchy presented in Kahrari et al. (2020) <doi:10.1080/03610918.2020.1804582>.
Modeling spatial dependencies in dependent variables, extending traditional spatial regression approaches. It allows for the joint modeling of both the mean and the variance of the dependent variable, incorporating semiparametric effects in both models. Based on generalized additive models (GAM), the package enables the inclusion of non-parametric terms while maintaining the classical theoretical framework of spatial regression. Additionally, it implements the Generalized Spatial Autoregression (GSAR) model, which extends classical methods like logistic Spatial Autoregresive Models (SAR), probit Spatial Autoregresive Models (SAR), and Poisson Spatial Autoregresive Models (SAR), offering greater flexibility in modeling spatial dependencies and significantly improving computational efficiency and the statistical properties of the estimators. Related work includes: a) J.D. Toloza-Delgado, Melo O.O., Cruz N.A. (2024). "Joint spatial modeling of mean and non-homogeneous variance combining semiparametric SAR and GAMLSS models for hedonic prices". <doi:10.1016/j.spasta.2024.100864>. b) Cruz, N. A., Toloza-Delgado, J. D., Melo, O. O. (2024). "Generalized spatial autoregressive model". <doi:10.48550/arXiv.2412.00945>.
This package provides a sparklyr extension package providing an integration with Google BigQuery'. It supports direct import/export where records are directly streamed from/to BigQuery'. In addition, data may be imported/exported via intermediate data extracts on Google Cloud Storage'.
This package provides a comprehensive suite of functions designed for constructing and managing ShinyItemAnalysis modules, supplemented with detailed guides, ready-to-use templates, linters, and tests. This package allows developers to seamlessly create and integrate one or more modules into their existing packages or to start a new module project from scratch.
Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few active (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data. The methods are discussed in detail by N. Benjamin Erichson et al. (2018) <arXiv:1804.00341>.
This package contains an R Markdown template for a clinical trial protocol adhering to the SPIRIT statement. The SPIRIT (Standard Protocol Items for Interventional Trials) statement outlines recommendations for a minimum set of elements to be addressed in a clinical trial protocol. Also contains functions to create a xml document from the template and upload it to clinicaltrials.gov<https://www.clinicaltrials.gov/> for trial registration.
It allows to rapidly compute, bootstrap and plot up to fourth-order Sobol'-based sensitivity indices using several state-of-the-art first and total-order estimators. Sobol indices can be computed either for models that yield a scalar as a model output or for systems of differential equations. The package also provides a suit of benchmark tests functions and several options to obtain publication-ready figures of the model output uncertainty and sensitivity-related analysis. An overview of the package can be found in Puy et al. (2022) <doi:10.18637/jss.v102.i05>.
Offers markdown output formats designed with various styles, allowing users to generate HTML reports tailored for scientific or machine learning showcase. The output has a contemporary appearance with vibrant visuals, providing numerous styles for effective highlighting. Created using the tufte <https://rstudio.github.io/tufte/> package code as a starting point.
This package provides a socket server allows to connect clients to R.
The aim of most plant breeding programmes is simultaneous improvement of several characters. An objective method involving simultaneous selection for several attributes then becomes necessary. It has been recognised that most rapid improvements in the economic value is expected from selection applied simultaneously to all the characters which determine the economic value of a plant, and appropriate assigned weights to each character according to their economic importance, heritability and correlations between characters. So the selection for economic value is a complex matter. If the component characters are combined together into an index in such a way that when selection is applied to the index, as if index is the character to be improved, most rapid improvement of economic value is expected. Such an index was first proposed by Smith (1937 <doi:10.1111/j.1469-1809.1936.tb02143.x>) based on the Fisher's (1936 <doi:10.1111/j.1469-1809.1936.tb02137.x>) "discriminant function" Dabholkar (1999 <https://books.google.co.in/books?id=mlFtumAXQ0oC&lpg=PA4&ots=Xgxp1qLuxS&dq=elements%20of%20biometrical%20genetics&lr&pg=PP1#v=onepage&q&f=false>). In this package selection index is calculated based on the Smith (1937) selection index method.
Bio-Layer Interferometry (BLI) is a technology to determine the binding kinetics between biomolecules. BLI signals are small and noisy when small molecules are investigated as ligands (analytes). We develop this package to process and analyze the BLI data acquired on Octet Red96 from Fortebio more accurately. Sun Q., Li X., et al (2020) <doi:10.1038/s41467-019-14238-3>. In this new version, we organize the BLI experiment data and analysis methods into a S4 class with self-explaining structure.
This package provides functions for simplified emulation of time series computer model output in model parameter space using Gaussian processes. Stilt can be used more generally for Kriging of spatio-temporal fields. There are functions to predict at new parameter settings, to test the emulator using cross-validation (which includes information on 95% confidence interval empirical coverage), and to produce contour plots over 2D slices in model parameter space.
This package provides the spatial sign correlation and the two-stage spatial sign correlation as well as a one-sample test for the correlation coefficient.