Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
This package provides a search interface to look up terms on Google', Bing', DuckDuckGo', Startpage', Ecosia', rseek', Twitter', StackOverflow', RStudio Community', GitHub', and BitBucket'. Upon searching, a browser window will open with the aforementioned search results.
Statistical performance measures used in the econometric literature to evaluate conditional covariance/correlation matrix estimates (MSE, MAE, Euclidean distance, Frobenius distance, Stein distance, asymmetric loss function, eigenvalue loss function and the loss function defined in Eq. (4.6) of Engle et al. (2016) <doi:10.2139/ssrn.2814555>). Additionally, compute Eq. (3.1) and (4.2) of Li et al. (2016) <doi:10.1080/07350015.2015.1092975> to compare the factor loading matrix. The statistical performance measures implemented have been previously used in, for instance, Laurent et al. (2012) <doi:10.1002/jae.1248>, Amendola et al. (2015) <doi:10.1002/for.2322> and Becker et al. (2015) <doi:10.1016/j.ijforecast.2013.11.007>.
Perform joint segmentation on two signal dimensions derived from total read depth (intensity) and allele specific read depth (intensity) for whole genome sequencing (WGS), whole exome sequencing (WES) and SNP array data.
Add indicators (spinner, progress bar, gif) in your shiny applications to show the user that the server is busy. And other tools to let your users know something is happening (send notifications, reports, ...).
This package provides a stable approach to variable selection through stability selection and the use of a permutation-based objective stability threshold. Lima et al (2021) <doi:10.1038/s41598-020-79317-8>, Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>.
This package provides comprehensive analytics, reporting, and testing capabilities for systematic review search strategies. The package focuses on validating search performance, generating standardized PRISMA'-compliant reports, and ensuring reproducibility in evidence synthesis. Features include precision-recall analysis, cross-database performance comparison, benchmark validation against gold standards, sensitivity analysis, temporal coverage assessment, automated report generation, and statistical comparison of search strategies. Supports multiple export formats including CSV', Excel', RIS', BibTeX', and EndNote'. Includes tools for duplicate detection, search strategy optimization, cross-validation frameworks, meta-analysis of benchmark results, power analysis for study design, and reproducibility package creation. Optionally connects to PubMed for direct database searching and real-time strategy comparison using the E-utilities API'. Enhanced with bootstrap comparison methods, McNemar test for strategy evaluation, and comprehensive visualization tools for performance assessment. Methods based on Manning et al. (2008) for information retrieval metrics, Moher et al. (2009) for PRISMA guidelines, and Sampson et al. (2006) for systematic review search methodology.
With satin functions, visualisation, data extraction and further analysis like producing climatologies from several images, and anomalies of satellite derived ocean data can be easily done. Reading functions can import a user defined geographical extent of data stored in netCDF files. Currently supported ocean data sources include NASA's Oceancolor web page <https://oceancolor.gsfc.nasa.gov/>, sensors VIIRS-SNPP; MODIS-Terra; MODIS-Aqua; and SeaWiFS. Available variables from this source includes chlorophyll concentration, sea surface temperature (SST), and several others. Data sources specific for SST that can be imported too includes Pathfinder AVHRR <https://www.ncei.noaa.gov/products/avhrr-pathfinder-sst> and GHRSST <https://www.ghrsst.org/>. In addition, ocean productivity data produced by Oregon State University can also be handled previous conversion from HDF4 to HDF5 format. Many other ocean variables can be processed by importing netCDF data files from two European Union's Copernicus Marine Service databases <https://marine.copernicus.eu/>, namely Global Ocean Physical Reanalysis and Global Ocean Biogeochemistry Hindcast.
The SALTSampler package facilitates Monte Carlo Markov Chain (MCMC) sampling of random variables on a simplex. A Self-Adjusting Logit Transform (SALT) proposal is used so that sampling is still efficient even in difficult cases, such as those in high dimensions or with parameters that differ by orders of magnitude. Special care is also taken to maintain accuracy even when some coordinates approach 0 or 1 numerically. Diagnostic and graphic functions are included in the package, enabling easy assessment of the convergence and mixing of the chain within the constrained space.
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of multi-group rank data in combination with object variables. The package also allows for the simulation of synthetic multi-group rank data.
This package provides methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) "Predictive Analytics for Energy Efficiency and Energy Retailing" <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9> "Enhancing energy efficiency in the residential sector with smart meter data analytics".
Calculate numerical agricultural soil management indicators from on a management timeline of an arable field. Currently, indicators for carbon (C) input into the soil system, soil tillage intensity rating (STIR), number of soil cover and living plant cover days, N fertilization and livestock intensity, and plant diversity are implemented. The functions can also be used independently of the management timeline to calculate some indicators. The package contains tables with reference information for the functions, as well as a *.xlsx template to collect the management data.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
This package provides tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance. The method is introduced in Hussey and Hughes (2007) <doi:10.1016/j.cct.2006.05.007>, extensions are discussed in Li et al. (2020) <doi:10.1177/0962280220932962>.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
Inference techniques for Fay Herriot Model.
It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>.
This package provides a tool for cutting data into intervals. Allows singleton intervals. Always includes the whole range of data by default. Flexible labelling. Convenience functions for cutting by quantiles etc. Handles dates, times, units and other vectors.
Makes the React library Chakra UI usable in Shiny apps. Chakra UI components include alert dialogs, drawers (sliding panels), menus, modals, popovers, sliders, and more.
Reliability and agreement analyses often have limited software support. Therefore, this package was created to make agreement and reliability analyses easier for the average researcher. The functions within this package include simple tests of agreement, agreement analysis for nested and replicate data, and provide robust analyses of reliability. In addition, this package contains a set of functions to help when planning studies looking to assess measurement agreement.
This package provides functions to estimate kernel-smoothed spatial and spatio-temporal densities and relative risk functions, and perform subsequent inference. Methodological details can be found in the accompanying tutorial: Davies et al. (2018) <DOI:10.1002/sim.7577>.
The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.
This package provides functions for conducting jackknife Euclidean / empirical likelihood inference for Spearman's rho (de Carvalho and Marques (2012) <doi:10.1080/10920277.2012.10597644>).
Stochastic frontier analysis with advanced methods. In particular, it applies the approach proposed by Latruffe et al. (2017) <DOI:10.1093/ajae/aaw077> to estimate a stochastic frontier with technical inefficiency effects when one input is endogenous.