Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An R shiny user interface for the nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>) package, designed to simplify the modeling process for users. Additionally, this package includes supplementary functions to further enhances the usage of nlmixr2'.
This package provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and OpenMP (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) <doi:10.18637/jss.v091.i12>. The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) <doi:10.1098/rsif.2008.0172> or the Particle Markov Chain Monte Carlo ('PMCMC') algorithm of Andrieu and others (2010) <doi:10.1111/j.1467-9868.2009.00736.x>.
Spatial downscaling of climate data (Global Circulation Models/Regional Climate Models) using quantile-quantile bias correction technique.
This package provides methods focused in performing the OSGB36/ETRS89 transformation (Great Britain and the Isle of Man only) by using the Ordnance Survey's OSTN15/OSGM15 transformation model. Calculation of distances and areas from sets of points defined in any of the supported Coordinated Systems is also available.
Forms likelihood-based confidence intervals (LBCIs) for parameters in structural equation modeling, introduced in Cheung and Pesigan (2023) <doi:10.1080/10705511.2023.2183860>. Currently implements the algorithm illustrated by Pek and Wu (2018) <doi:10.1037/met0000163>, and supports the robust LBCI proposed by Falk (2018) <doi:10.1080/10705511.2017.1367254>.
Performing cell type annotation based on cell markers from a unified database. The approach utilizes correlation-based approach combined with association analysis using Fisher-exact and phyper statistical tests (Upton, Graham JG. (1992) <DOI:10.2307/2982890>).
This package provides crop yield and meteorological data for Ontario, Canada. Includes functions for fitting and predicting data using spatio-temporal models, as well as tools for visualizing the results. The package builds upon existing R packages, including copula (Hofert et al., 2025) <doi:10.32614/CRAN.package.copula>, and bsts (Scott, 2024) <doi:10.32614/CRAN.package.bsts>.
Scrap speech text and speaker informations of speeches of House of Representatives of Brazil, and transform in a cleaned tibble.
Simulates regression models, including both simple regression and generalized linear mixed models with up to three level of nesting. Power simulations that are flexible allowing the specification of missing data, unbalanced designs, and different random error distributions are built into the package.
We provide full functionality to smooth L1 penalized regression operators and to compute regression estimates thereof. For this, the objective function of a user-specified regression operator is first smoothed using Nesterov smoothing (see Y. Nesterov (2005) <doi:10.1007/s10107-004-0552-5>), resulting in a modified objective function with explicit gradients everywhere. The smoothed objective function and its gradient are minimized via BFGS, and the obtained minimizer is returned. Using Nesterov smoothing, the smoothed objective function can be made arbitrarily close to the original (unsmoothed) one. In particular, the Nesterov approach has the advantage that it comes with explicit accuracy bounds, both on the L1/L2 difference of the unsmoothed to the smoothed objective functions as well as on their respective minimizers (see G. Hahn, S.M. Lutz, N. Laha, C. Lange (2020) <doi:10.1101/2020.09.17.301788>). A progressive smoothing approach is provided which iteratively smoothes the objective function, resulting in more stable regression estimates. A function to perform cross validation for selection of the regularization parameter is provided.
This package provides a meta-package that aims to make R easier for everyone, especially programmers who have a background in SAS® software. This set of packages brings many useful concepts to R', including data libraries, data dictionaries, formats and format catalogs, a data step, and a traceable log. The system also includes a package that replicates several commonly-used SAS® procedures, like PROC FREQ', PROC MEANS', and PROC REG'.
Implement a GAM-based (Generalized Additive Models) spatial surplus production model (spatial SPM), aimed at modeling northern shrimp population in Atlantic Canada but potentially to any stock in any location. The package is opinionated in its implementation of SPMs as it internally makes the choice to use penalized spatial gams with time lags. However, it also aims to provide options for the user to customize their model. The methods are described in Pedersen et al. (2022, <https://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2022/2022_062-eng.html>).
This package provides a platform for computing competition indices and experimenting with spatially explicit individual-based vegetation models.
Estimate average treatment effects (ATEs) in stratified randomized experiments. `sreg` supports a wide range of stratification designs, including matched pairs, n-tuple designs, and larger strata with many units â possibly of unequal size across strata. sreg is designed to accommodate scenarios with multiple treatments and cluster-level treatment assignments, and accommodates optimal linear covariate adjustment based on baseline observable characteristics. sreg computes estimators and standard errors based on Bugni, Canay, Shaikh (2018) <doi:10.1080/01621459.2017.1375934>; Bugni, Canay, Shaikh, Tabord-Meehan (2024+) <doi:10.48550/arXiv.2204.08356>; Jiang, Linton, Tang, Zhang (2023+) <doi:10.48550/arXiv.2201.13004>; Bai, Jiang, Romano, Shaikh, and Zhang (2024) <doi:10.1016/j.jeconom.2024.105740>; Bai (2022) <doi:10.1257/aer.20201856>; Bai, Romano, and Shaikh (2022) <doi:10.1080/01621459.2021.1883437>; Liu (2024+) <doi:10.48550/arXiv.2301.09016>; and Cytrynbaum (2024) <doi:10.3982/QE2475>.
This package provides utilities to create or suppress start-up messages.
Interactively play a game of sokoban ,which has nine game levels.Sokoban is a type of transport puzzle, in which the player pushes boxes or crates around in a warehouse, trying to get them to storage locations.
Data in multidimensional systems is obtained from operational systems and is transformed to adapt it to the new structure. Frequently, the operations to be performed aim to transform a flat table into a star schema. Transformations can be carried out using professional extract, transform and load tools or tools intended for data transformation for end users. With the tools mentioned, this transformation can be carried out, but it requires a lot of work. The main objective of this package is to define transformations that allow obtaining stars from flat tables easily. In addition, it includes basic data cleaning, dimension enrichment, incremental data refresh and query operations, adapted to this context.
Identify sudden gains based on the three criteria outlined by Tang and DeRubeis (1999) <doi:10.1037/0022-006X.67.6.894> to a selection of repeated measures. Sudden losses, defined as the opposite of sudden gains can also be identified. Two different datasets can be created, one including all sudden gains/losses and one including one selected sudden gain/loss for each case. It can extract scores around sudden gains/losses. It can plot the average change around sudden gains/losses and trajectories of individual cases.
This package provides tools to convert from specific formats to more general forms of spatial data. Using tables to store the actual entities present in spatial data provides flexibility, and the functions here deliberately minimize the level of interpretation applied, leaving that for specific applications. Includes support for simple features, round-trip for Spatial classes and long-form tables, analogous to ggplot2::fortify'. There is also a more normal form representation that decomposes simple features and their kin to tables of objects, parts, and unique coordinates.
Random Forest-like tree ensemble that works with groups of predictor variables. When building a tree, a number of variables is taken randomly from each group separately, thus ensuring that it considers variables from each group for the splits. Useful when rows contain information about different things (e.g. user information and product information) and it's not sensible to make a prediction with information from only one group of variables, or when there are far more variables from one group than the other and it's desired to have groups appear evenly on trees. Trees are grown using the C5.0 algorithm rather than the usual CART algorithm. Supports parallelization (multithreaded), missing values in predictors, and categorical variables (without doing One-Hot encoding in the processing). Can also be used to create a regular (non-stratified) Random Forest-like model, but made up of C5.0 trees and with some additional control options. As it's built with C5.0 trees, it works only for classification (not for regression).
Implementation of the scregclust algorithm described in Larsson, Held, et al. (2024) <doi:10.1038/s41467-024-53954-3> which reconstructs regulatory programs of target genes in scRNA-seq data. Target genes are clustered into modules and each module is associated with a linear model describing the regulatory program.
Multi-stage selection is practiced in numerous fields of life and social sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and effort, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain plays a crucial role. It can be calculated by integration of a truncated multivariate normal (MVN) distribution. While mathematical formulas for calculating the selection gain and the variance among selected candidates were developed long time ago, solutions for numerical calculation were not available. This package can also be used for optimizing multi-stage selection programs for a given total budget and different costs of evaluating the candidates in each stage.
Median-of-means is a generic yet powerful framework for scalable and robust estimation. A framework for Bayesian analysis is called M-posterior, which estimates a median of subset posterior measures. For general exposition to the topic, see the paper by Minsker (2015) <doi:10.3150/14-BEJ645>.
An end-to-end toolkit for land use and land cover classification using big Earth observation data. Builds satellite image data cubes from cloud collections. Supports visualization methods for images and time series and smoothing filters for dealing with noisy time series. Enables merging of multi-source imagery (SAR, optical, DEM). Includes functions for quality assessment of training samples using self-organized maps and to reduce training samples imbalance. Provides machine learning algorithms including support vector machines, random forests, extreme gradient boosting, multi-layer perceptrons, temporal convolution neural networks, and temporal attention encoders. Performs efficient classification of big Earth observation data cubes and includes functions for post-classification smoothing based on Bayesian inference. Enables best practices for estimating area and assessing accuracy of land change. Includes object-based spatio-temporal segmentation for space-time OBIA. Minimum recommended requirements: 16 GB RAM and 4 CPU dual-core.