Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sensitivity analysis for multiple outcomes in observational studies. For instance, all linear combinations of several outcomes may be explored using Scheffe projections in the comparison() function; see Rosenbaum (2016, Annals of Applied Statistics) <doi:10.1214/16-AOAS942>. Alternatively, attention may focus on a few principal components in the principal() function. The package includes parallel methods for individual outcomes, including tests in the senm() function and confidence intervals in the senmCI() function.
Run complex native scripts with a single command, similar to system commands.
Calculates the power and sample size for Cochran-Mantel-Haenszel tests. There are also several helper functions for working with probability, odds, relative risk, and odds ratio values.
This package implements the s-values proposed by Ed. Leamer. It provides a context-minimal approach for sensitivity analysis using extreme bounds to assess the sturdiness of regression coefficients.
This package provides an R interface to SymEngine <https://github.com/symengine/>, a standalone C++ library for fast symbolic manipulation. The package has functionalities for symbolic computation like calculating exact mathematical expressions, solving systems of linear equations and code generation.
This package provides influence function-based methods to evaluate a longitudinal surrogate marker in a censored time-to-event outcome setting, with plug-in and targeted maximum likelihood estimation options. Details are described in: Agniel D and Parast L (2025). "Robust Evaluation of Longitudinal Surrogate Markers with Censored Data." Journal of the Royal Statistical Society: Series B <doi:10.1093/jrsssb/qkae119>. A tutorial for this package can be found at <https://www.laylaparast.com/survivalsurrogate> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/survivalsurrogateApp/>.
Offers a systematic way for conditional reporting of figures and tables for many (and bivariate combinations of) variables, typically from survey data. Contains interactive ggiraph'-based (<https://CRAN.R-project.org/package=ggiraph>) plotting functions and data frame-based summary tables (bivariate significance tests, frequencies/proportions, unique open ended responses, etc) with many arguments for customization, and extensions possible. Uses a global options() system for neatly reducing redundant code. Also contains tools for immediate saving of objects and returning a hashed link to the object, useful for creating download links to high resolution images upon rendering in Quarto'. Suitable for highly customized reports, primarily intended for survey research.
It provides cumulative distribution function (CDF), quantile, p-value, statistical power calculator and random number generator for a collection of group-testing procedures, including the Higher Criticism tests, the one-sided Kolmogorov-Smirnov tests, the one-sided Berk-Jones tests, the one-sided phi-divergence tests, etc. The input are a group of p-values. The null hypothesis is that they are i.i.d. Uniform(0,1). In the context of signal detection, the null hypothesis means no signals. In the context of the goodness-of-fit testing, which contrasts a group of i.i.d. random variables to a given continuous distribution, the input p-values can be obtained by the CDF transformation. The null hypothesis means that these random variables follow the given distribution. For reference, see [1]Hong Zhang, Jiashun Jin and Zheyang Wu. "Distributions and power of optimal signal-detection statistics in finite case", IEEE Transactions on Signal Processing (2020) 68, 1021-1033; [2] Hong Zhang and Zheyang Wu. "The general goodness-of-fit tests for correlated data", Computational Statistics & Data Analysis (2022) 167, 107379.
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
This package implements sparse Bayesian learning method for QTL mapping and genome-wide association studies.
More easy to get intersection, union or complementary set and combinations.
An extensible framework for developing species distribution models using individual and community-based approaches, generate ensembles of models, evaluate the models, and predict species potential distributions in space and time. For more information, please check the following paper: Naimi, B., Araujo, M.B. (2016) <doi:10.1111/ecog.01881>.
Sample size requirements calculation using three different Bayesian criteria in the context of designing an experiment to estimate a normal mean or the difference between two normal means. Functions for calculation of required sample sizes for the Average Length Criterion, the Average Coverage Criterion and the Worst Outcome Criterion in the context of normal means are provided. Functions for both the fully Bayesian and the mixed Bayesian/likelihood approaches are provided. For reference see Joseph L. and Bélisle P. (1997) <https://www.jstor.org/stable/2988525>.
This package provides a collection of functions to search and download street view imagery ('Mapilary <https://www.mapillary.com/developer/api-documentation>) and to extract, quantify, and visualize visual features. Moreover, there are functions provided to generate Qualtrics survey in TXT format using the collection of street views for various research purposes.
This package performs structured OLS (sOLS) and structured SIR (sSIR).
The Brazilian system for diploma registration and validation on technical and superior courses are managing by Sistec platform, see <https://sistec.mec.gov.br/>. This package provides tools for Brazilian institutions to update the student's registration and make data analysis about their situation, retention and drop out.
Simulate multivariate correlated data given nonparametric marginals and their joint structure characterized by a Pearson or Spearman correlation matrix. The simulator engages the problem from a purely computational perspective. It assumes no statistical models such as copulas or parametric distributions, and can approximate the target correlations regardless of theoretical feasibility. The algorithm integrates and advances the Iman-Conover (1982) approach <doi:10.1080/03610918208812265> and the Ruscio-Kaczetow iteration (2008) <doi:10.1080/00273170802285693>. Package functions are carefully implemented in C++ for squeezing computing speed, suitable for large input in a manycore environment. Precision of the approximation and computing speed both substantially outperform various CRAN packages to date. Benchmarks are detailed in function examples. A simple heuristic algorithm is additionally designed to optimize the joint distribution in the post-simulation stage. The heuristic demonstrated good potential of achieving the same level of precision of approximation without the enhanced Iman-Conover-Ruscio-Kaczetow. The package contains a copy of Permuted Congruential Generator.
Easily analyze and visualize differences between samples (e.g., benchmark comparisons, nonresponse comparisons in surveys) on three levels. The comparisons can be univariate, bivariate or multivariate. On univariate level the variables of interest of a survey and a comparison survey (i.e. benchmark) are compared, by calculating one of several difference measures (e.g., relative difference in mean), and an average difference between the surveys. On bivariate level a function can calculate significant differences in correlations for the surveys. And on multivariate levels a function can calculate significant differences in model coefficients between the surveys of comparison. All of those differences can be easily plotted and outputted as a table. For more detailed information on the methods and example use see Rohr, B., Silber, H., & Felderer, B. (2024). Comparing the Accuracy of Univariate, Bivariate, and Multivariate Estimates across Probability and Nonprobability Surveys with Population Benchmarks. Sociological Methodology <doi:10.1177/00811750241280963>.
Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicitated within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.
This package provides functions in this package provide solution to classical problem in survey methodology - an optimum sample allocation in stratified sampling. In this context, the optimum allocation is in the classical Tschuprow-Neyman's sense and it satisfies additional lower or upper bounds restrictions imposed on sample sizes in strata. There are few different algorithms available to use, and one them is based on popular sample allocation method that applies Neyman allocation to recursively reduced set of strata. This package also provides the function that computes a solution to the minimum cost allocation problem, which is a minor modification of the classical optimum sample allocation. This problem lies in the determination of a vector of strata sample sizes that minimizes total cost of the survey, under assumed fixed level of the stratified estimator's variance. As in the case of the classical optimum allocation, the problem of minimum cost allocation can be complemented by imposing upper-bounds constraints on sample sizes in strata.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
This package provides a ggplot2 theme and colour palettes to create accessible data visualisations in the Scottish Government.
This statistical method uses the nearest neighbor algorithm to estimate absolute distances between single cells based on a chosen constellation of surface proteins, with these distances being a measure of the similarity between the two cells being compared. Based on Sen, N., Mukherjee, G., and Arvin, A.M. (2015) <DOI:10.1016/j.ymeth.2015.07.008>.
This package provides drop-in replacements for purrr and furrr mapping functions with built-in fault tolerance, automatic checkpointing, and seamless recovery capabilities. When long-running computations are interrupted due to errors, system crashes, or other failures, simply re-run the same code to automatically resume from the last checkpoint. Ideal for large-scale data processing, API calls, web scraping, and other time-intensive operations where reliability is critical. For purrr methodology, see Wickham and Henry (2023) <https://purrr.tidyverse.org/>.