Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
With given inputs that include number of points, discrete design space, a measure of skewness, models and parameter value, this package calculates the objective value, optimal designs and plot the equivalence theory under A- and D-optimal criteria under the second-order Least squares estimator. This package is based on the paper "Properties of optimal regression designs under the second-order least squares estimator" by Chi-Kuang Yeh and Julie Zhou (2021) <doi:10.1007/s00362-018-01076-6>.
This package provides methods focused in performing the OSGB36/ETRS89 transformation (Great Britain and the Isle of Man only) by using the Ordnance Survey's OSTN15/OSGM15 transformation model. Calculation of distances and areas from sets of points defined in any of the supported Coordinated Systems is also available.
Proposes application of spectral analysis and jack-knife resampling for multivariate sequence forecasting. The application allows for a fast random search in a compact space of hyper-parameters composed by Sequence Length and Jack-Knife Leave-N-Out.
Simple and flexible quizzes in shiny'. Easily create quizzes from various pre-built question and choice types or create your own using htmltools and shiny packages as building blocks. Integrates with larger shiny applications. Ideal for non-web-developers such as educators, data scientists, and anyone who wants to assess responses interactively in a small form factor.
Secure handling of API keys can be difficult. This package provides secure convenience functions for entering / handling API keys and opening connections via inversion of control on those keys. Works seamlessly between production and developer environments.
Cleans and formats language transcripts guided by a series of transformation options (e.g., lemmatize words, omit stopwords, split strings across rows). SemanticDistance computes two distinct metrics of cosine semantic distance (experiential and embedding). These values reflect pairwise cosine distance between different elements or chunks of a language sample. SemanticDistance can process monologues (e.g., stories, ordered text), dialogues (e.g., conversation transcripts), word pairs arrayed in columns, and unordered word lists. Users specify options for how they wish to chunk distance calculations. These options include: rolling ngram-to-word distance (window of n-words to each new word), ngram-to-ngram distance (2-word chunk to the next 2-word chunk), pairwise distance between words arrayed in columns, matrix comparisons (i.e., all possible pairwise distances between words in an unordered list), turn-by-turn distance (talker to talker in a dialogue transcript). SemanticDistance includes visualization options for analyzing distances as time series data and simple semantic network dynamics (e.g., clustering, undirected graph network).
Allow to identify motifs in spatial-time series. A motif is a previously unknown subsequence of a (spatial) time series with relevant number of occurrences. For this purpose, the Combined Series Approach (CSA) is used.
Recently, regularized variable selection has emerged as a powerful tool to identify and dissect gene-environment interactions. Nevertheless, in longitudinal studies with high dimensional genetic factors, regularization methods for GÃ E interactions have not been systematically developed. In this package, we provide the implementation of sparse group variable selection, based on both the quadratic inference function (QIF) and generalized estimating equation (GEE), to accommodate the bi-level selection for longitudinal GÃ E studies with high dimensional genomic features. Alternative methods conducting only the group or individual level selection have also been included. The core modules of the package have been developed in C++.
This package provides a group of functions that support the sf package, focused primarily on repairing polygons that break when re-projected.
Generate common data forms for complex data suitable for conversions and transmission by decomposition as paths or primitives. Paths are sequentially-linked records, primitives are basic atomic elements and both can model many forms and be grouped into hierarchical structures. The universal models SC0 (structural) and SC (labelled, relational) are composed of edges and can represent any hierarchical form. Specialist models PATH', ARC and TRI provide the most common intermediate forms used for converting from one form to another. The methods are inspired by the simplicial complex <https://en.wikipedia.org/wiki/Simplicial_complex> and provide intermediate forms that relate spatial data structures to this mathematical construct.
Interactive shiny application for working with Structural Equation Modelling technique. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/semwebappk/> .
This package provides a novel semi-supervised machine learning algorithm to predict phenotype event times using Electronic Health Record (EHR) data.
Offers a helping hand to psychologists and other behavioral scientists who routinely deal with experimental data from factorial experiments. It includes several functions to format output from other R functions according to the style guidelines of the APA (American Psychological Association). This formatted output can be copied directly into manuscripts to facilitate data reporting. These features are backed up by a toolkit of several small helper functions, e.g., offering out-of-the-box outlier removal. The package lends its name to Georg "Schorsch" Schuessler, ingenious technician at the Department of Psychology III, University of Wuerzburg. For details on the implemented methods, see Roland Pfister and Markus Janczyk (2016) <doi: 10.20982/tqmp.12.2.p147>.
The purpose of this package is to manipulate SVG files that are templates of charts the user wants to produce. In vector graphics one copes with x-/y-coordinates of elements (e.g. lines, rectangles, text). Their scale is often dependent on the program that is used to produce the graphics. In applied statistics one usually has numeric values on a fixed scale (e.g. percentage values between 0 and 100) to show in a chart. Basically, svgtools transforms the statistical values into coordinates and widths/heights of the vector graphics. This is done by stackedBar() for bar charts, by linesSymbols() for charts with lines and/or symbols (dot markers) and scatterSymbols() for scatterplots.
Can be used to model the fate of soil organic carbon and soil organic nitrogen and to calculate N mineralisation rates. Provides a framework that numerically solves differential equations of soil organic carbon models based on first-order kinetics and extends these models to include the nitrogen component. The name sorcering is an acronym for Soil ORganic Carbon & CN Ratio drIven Nitrogen modellinG framework'.
This package implements a thresholded version of the Sliced Inverse Regression method (Li, K. C. (1991) <doi:10.2307/2290563>), which allows to do variable selection.
This package implements exact, normally approximated, and sampling-based sensitivity analysis for observational studies with contingency tables. Includes exact (kernel-based), normal approximation, and sequential importance sampling (SIS) methods using Rcpp for computational efficiency. The methods build upon the framework introduced in Rosenbaum (2002) <doi:10.1007/978-1-4757-3692-2> and the generalized design sensitivity framework developed by Chiu (2025) <doi:10.48550/arXiv.2507.17207>.
This package provides methods for generating, exploring and executing seamless Phase II-III designs of Lai, Lavori and Shih using generalized likelihood ratio statistics. Includes pdf and source files that describe the entire R implementation with the relevant mathematical details.
This package implements a simple, novel clustering algorithm based on optimizing the silhouette width. See <doi:10.1101/2023.11.07.566055> for details.
This package provides functions to visually and statistically analyze single system data.
Powerful user interface for adding symbols, smileys, arrows, building mathematical equations using LaTeX or r2symbols'. Built for use in development of Markdown and Shiny Outputs.
Computes standard error and confidence interval of various descriptive statistics under various designs and sampling schemes. The main function, superb(), return a plot. It can also be used to obtain a dataframe with the statistics and their precision intervals so that other plotting environments (e.g., Excel) can be used. See Cousineau and colleagues (2021) <doi:10.1177/25152459211035109> or Cousineau (2017) <doi:10.5709/acp-0214-z> for a review as well as Cousineau (2005) <doi:10.20982/tqmp.01.1.p042>, Morey (2008) <doi:10.20982/tqmp.04.2.p061>, Baguley (2012) <doi:10.3758/s13428-011-0123-7>, Cousineau & Laurencelle (2016) <doi:10.1037/met0000055>, Cousineau & O'Brien (2014) <doi:10.3758/s13428-013-0441-z>, Calderini & Harding <doi:10.20982/tqmp.15.1.p001> for specific references. The documentation is available at <https://dcousin3.github.io/superb/> .
Create a scatter plot matrix, using `htmlwidgets` package and `d3.js`.
Perform joint segmentation on two signal dimensions derived from total read depth (intensity) and allele specific read depth (intensity) for whole genome sequencing (WGS), whole exome sequencing (WES) and SNP array data.