Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions and datasets for Jeff Gill: "Bayesian Methods: A Social and Behavioral Sciences Approach". First, Second, and Third Edition. Published by Chapman and Hall/CRC (2002, 2007, 2014) <doi:10.1201/b17888>.
This package implements a wide variety of one- and two-parameter Bayesian CRM designs. The program can run interactively, allowing the user to enter outcomes after each cohort has been recruited, or via simulation to assess operating characteristics. See Sweeting et al. (2013): <doi:10.18637/jss.v054.i13>.
Calculates the bidimensional regression between two 2D configurations following the approach by Tobler (1965).
Bayesian analysis of item-level hierarchical twin data using an integrated item response theory model. Analyses are based on Schwabe & van den Berg (2014) <doi:10.1007/s10519-014-9649-7>, Molenaar & Dolan (2014) <doi:10.1007/s10519-014-9647-9>, Schwabe, Jonker & van den Berg (2016) <doi:10.1007/s10519-015-9768-9> and Schwabe, Boomsma & van den Berg (2016) <doi:10.1016/j.lindif.2017.01.018>.
This package provides likelihood-based and hierarchical estimation methods for thresholded (binomial-probit) data. Supports fixed-mean and random-mean models with maximum likelihood estimation (MLE), generalized linear mixed model (GLMM), and Bayesian Markov chain Monte Carlo (MCMC) implementations. For methodological background, see Albert and Chib (1993) <doi:10.1080/01621459.1993.10476321> and McCulloch (1994) <doi:10.2307/2297959>.
This package implements the Bayesian FDR control described by Newton et al. (2004), <doi:10.1093/biostatistics/5.2.155>. Allows optimisation and visualisation of expected error rates based on tail posterior probability tests. Based on code written by Catalina Vallejos for BASiCS, see Beyond comparisons of means: understanding changes in gene expression at the single-cell level Vallejos et al. (2016) <doi:10.1186/s13059-016-0930-3>.
Collection of tools to work with European basketball data. Functions available are related to friendly web scraping, data management and visualization. Data were obtained from <https://www.euroleaguebasketball.net/euroleague/>, <https://www.euroleaguebasketball.net/eurocup/> and <https://www.acb.com/>, following the instructions of their respectives robots.txt files, when available. Box score data are available for the three leagues. Play-by-play and spatial shooting data are also available for the Spanish league. Methods for analysis include a population pyramid, 2D plots, circular plots of players percentiles, plots of players monthly/yearly stats, team heatmaps, team shooting plots, team four factors plots, cross-tables with the results of regular season games, maps of nationalities, combinations of lineups, possessions-related variables, timeouts, performance by periods, personal fouls, offensive rebounds and different types of shooting charts. Please see Vinue (2020) <doi:10.1089/big.2018.0124> and Vinue (2024) <doi:10.1089/big.2023.0177>.
Assigns standardized diagnoses using the Banff Classification (Category 1 to 6 diagnoses, including Acute and Chronic active T-cell mediated rejection as well as Active, Chronic active, and Chronic antibody mediated rejection). The main function considers a minimal dataset containing biopsies information in a specific format (described by a data dictionary), verifies its content and format (based on the data dictionary), assigns diagnoses, and creates a summary report. The package is developed on the reference guide to the Banff classification of renal allograft pathology Roufosse C, Simmonds N, Clahsen-van Groningen M, et al. A (2018) <doi:10.1097/TP.0000000000002366>. The full description of the Banff classification is available at <https://banfffoundation.org/>.
Package providing a number of functions for working with Two- and Four-parameter Beta and closely related distributions (i.e., the Gamma- Binomial-, and Beta-Binomial distributions). Includes, among other things: - d/p/q/r functions for Four-Parameter Beta distributions and Generalized "Binomial" (continuous) distributions, and d/p/r- functions for Beta- Binomial distributions. - d/p/q/r functions for Two- and Four-Parameter Beta distributions parameterized in terms of their means and variances rather than their shape-parameters. - Moment generating functions for Binomial distributions, Beta-Binomial distributions, and observed value distributions. - Functions for estimating classification accuracy and consistency, making use of the Classical Test-Theory based Livingston and Lewis (L&L) and Hanson and Brennan approaches. A shiny app is available, providing a GUI for the L&L approach when used for binary classifications. For url to the app, see documentation for the LL.CA() function. Livingston and Lewis (1995) <doi:10.1111/j.1745-3984.1995.tb00462.x>. Lord (1965) <doi:10.1007/BF02289490>. Hanson (1991) <https://files.eric.ed.gov/fulltext/ED344945.pdf>.
This package implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramà rez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramà rez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolà n-Dà az and Rubio-Ramà rez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by Wang & Woźniak (2024) <doi:10.48550/arXiv.2501.16711>. The bsvarSIGNs package is aligned regarding objects, workflows, and code structure with the R package bsvars by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.
Bayesian Generalized Linear Regression.
Data on multiple individuals through time are often sampled at times that differ between persons. Irregular observation times can severely complicate the statistical analysis of the data. The broken stick model approximates each subjectâ s trajectory by one or more connected line segments. The times at which segments connect (breakpoints) are identical for all subjects and under control of the user. A well-fitting broken stick model effectively transforms individual measurements made at irregular times into regular trajectories with common observation times. Specification of the model requires three variables: time, measurement and subject. The model is a special case of the linear mixed model, with time as a linear B-spline and subject as the grouping factor. The main assumptions are: subjects are exchangeable, trajectories between consecutive breakpoints are straight, random effects follow a multivariate normal distribution, and unobserved data are missing at random. The package contains functions for fitting the broken stick model to data, for predicting curves in new data and for plotting broken stick estimates. The package supports two optimization methods, and includes options to structure the variance-covariance matrix of the random effects. The analyst may use the software to smooth growth curves by a series of connected straight lines, to align irregularly observed curves to a common time grid, to create synthetic curves at a user-specified set of breakpoints, to estimate the time-to-time correlation matrix and to predict future observations. See <doi:10.18637/jss.v106.i07> for additional documentation on background, methodology and applications.
This package contains a variety of methods to generate typical causal inference estimates using Bayesian Additive Regression Trees (BART) as the underlying regression model (Hill (2012) <doi:10.1198/jcgs.2010.08162>).
Bumblebee colonies grow during worker production, then decline after switching to production of reproductive individuals (drones and gynes). This package provides tools for modeling and visualizing this pattern by identifying a switchpoint with a growth rate before and a decline rate after the switchpoint. The mathematical models fit by bumbl are described in Crone and Williams (2016) <doi:10.1111/ele.12581>.
This includes functions for creating 3D and 4D images using WebGL', rgl', and JavaScript commands. This package relies on the X toolkit ('XTK', <https://github.com/xtk/X#readme>).
This package provides methods for frontier analysis, Data Envelopment Analysis (DEA), under different technology assumptions (fdh, vrs, drs, crs, irs, add/frh, and fdh+), and using different efficiency measures (input based, output based, hyperbolic graph, additive, super, and directional efficiency). Peers and slacks are available, partial price information can be included, and optimal cost, revenue and profit can be calculated. Evaluation of mergers is also supported. Methods for graphing the technology sets are also included. There is also support for comparative methods based on Stochastic Frontier Analyses (SFA) and for convex nonparametric least squares of convex functions (STONED). In general, the methods can be used to solve not only standard models, but also many other model variants. It complements the book, Bogetoft and Otto, Benchmarking with DEA, SFA, and R, Springer-Verlag, 2011, but can of course also be used as a stand-alone package.
This package provides a set of tools for performing graph theory analysis of brain MRI data. It works with data from a Freesurfer analysis (cortical thickness, volumes, local gyrification index, surface area), diffusion tensor tractography data (e.g., from FSL) and resting-state fMRI data (e.g., from DPABI). It contains a graphical user interface for graph visualization and data exploration, along with several functions for generating useful figures.
Runs hierarchical linear Bayesian models. Samples from the posterior distributions of model parameters in JAGS (Just Another Gibbs Sampler; Plummer, 2017, <http://mcmc-jags.sourceforge.net>). Computes Bayes factors for group parameters of interest with the Savage-Dickey density ratio (Wetzels, Raaijmakers, Jakab, Wagenmakers, 2009, <doi:10.3758/PBR.16.4.752>).
Package BHMSMAfMRI performs Bayesian hierarchical multi-subject multiscale analysis of fMRI data as described in Sanyal & Ferreira (2012) <DOI:10.1016/j.neuroimage.2012.08.041>, or other multiscale data, using wavelet-based prior that borrows strength across subjects and provides posterior smoothed images of the effect sizes and samples from the posterior distribution.
This package provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA), canonical variate analysis (CVA) and simple correspondence analysis (CA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.
This package provides a backward-pipe operator for magrittr (%<%) or pipeR (%<<%) that allows for a performing operations from right-to-left. This allows writing more legible code where right-to-left ordering is natural. This is common with hierarchies and nested structures such as trees, directories or markup languages (e.g. HTML and XML). The package also includes a R-Studio add-in that can be bound to a keyboard shortcut.
Retrieve and import data from the INKAR database (Indikatoren und Karten zur Raum- und Stadtentwicklung Datenbank, <https://www.inkar.de>) of the Federal Office for Building and Regional Planning (BBSR) in Bonn using their JSON API.
This package provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.
Under- and over-dispersed binary data are modeled using an extended Poisson process model (EPPM) appropriate for binary data. A feature of the model is that the under-dispersion relative to the binomial distribution only needs to be greater than zero, but the over-dispersion is restricted compared to other distributional models such as the beta and correlated binomials. Because of this, the examples focus on under-dispersed data and how, in combination with the beta or correlated distributions, flexible models can be fitted to data displaying both under- and over-dispersion. Using Generalized Linear Model (GLM) terminology, the functions utilize linear predictors for the probability of success and scale-factor with various link functions for p, and log link for scale-factor, to fit a variety of models relevant to areas such as bioassay. Details of the EPPM are in Faddy and Smith (2012) <doi:10.1002/bimj.201100214> and Smith and Faddy (2019) <doi:10.18637/jss.v090.i08>.