Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Testing of soil for the contents of organic carbon, and available macro- and micro-nutrients is a crucial part of soil fertility assessment. This package computes some routinely tested soil properties viz. organic carbon (C), total nitrogen (N), available N, mineral N, available phosphorus (P), available potassium (K), available iron (Fe), available zinc (Zn), available manganese (Mn), available copper (Cu), and available nickel (Ni) in soil based on laboratory analysis data obtained by most commonly followed protocols. Besides, it can also draw standard curves based on absorption/emission vs. concentration data, and give out unknown concentrations from absorption/emission readings.
This package provides a statistical disclosure control tool to protect frequency tables in cases where small values are sensitive. The function PLSrounding() performs small count rounding of necessary inner cells so that all small frequencies of cross-classifications to be published (publishable cells) are rounded. This is equivalent to changing micro data since frequencies of unique combinations are changed. Thus, additivity and consistency are guaranteed. The methodology is described in Langsrud and Heldal (2018) <https://www.researchgate.net/publication/327768398_An_Algorithm_for_Small_Count_Rounding_of_Tabular_Data>.
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
Implementations of the Single Transferable Vote counting system. By default, it uses the Cambridge method for surplus allocation and Droop method for quota calculation. Fractional surplus allocation and the Hare quota are available as options.
Enables instrumentation of Shiny apps for tracking user session events such as input changes, browser type, and session duration. These events can be sent to any of the available storage backends and analyzed using the included Shiny app to gain insights about app usage and adoption.
Introduction to some novel accurate hybrid methods of geostatistical and machine learning methods for spatial predictive modelling. It contains two commonly used geostatistical methods, two machine learning methods, four hybrid methods and two averaging methods. For each method, two functions are provided. One function is for assessing the predictive errors and accuracy of the method based on cross-validation. The other one is for generating spatial predictions using the method. For details please see: Li, J., Potter, A., Huang, Z., Daniell, J. J. and Heap, A. (2010) <https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/71407> Li, J., Heap, A. D., Potter, A., Huang, Z. and Daniell, J. (2011) <doi:10.1016/j.csr.2011.05.015> Li, J., Heap, A. D., Potter, A. and Daniell, J. (2011) <doi:10.1016/j.envsoft.2011.07.004> Li, J., Potter, A., Huang, Z. and Heap, A. (2012) <https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/74030>.
Algorithms for fitting scaled sparse linear regression and estimating precision matrices.
Miscellaneous functions for working with stars objects, mainly single-band rasters. Currently includes functions for: (1) focal filtering, (2) detrending of Digital Elevation Models, (3) calculating flow length, (4) calculating the Convergence Index, (5) calculating topographic aspect and topographic slope.
Many of the models encountered in applications of point process methods to the study of spatio-temporal phenomena are covered in stpp'. This package provides statistical tools for analyzing the global and local second-order properties of spatio-temporal point processes, including estimators of the space-time inhomogeneous K-function and pair correlation function. It also includes tools to get static and dynamic display of spatio-temporal point patterns. See Gabriel et al (2013) <doi:10.18637/jss.v053.i02>.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
This package provides functions that wrap HTML Bootstrap components code to enable the design and layout of informative landing home pages for Shiny applications. This can lead to a better user experience for the users and writing less HTML for the developer.
Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.
An English language syllable counter, plus readability score measure-er. For readability, we support Flesch Reading Ease and Flesch-Kincaid Grade Level ('Kincaid et al'. 1975) <https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1055&context=istlibrary>, Automated Readability Index ('Senter and Smith 1967) <https://apps.dtic.mil/sti/citations/AD0667273>, Simple Measure of Gobbledygook (McLaughlin 1969), and Coleman-Liau (Coleman and Liau 1975) <doi:10.1037/h0076540>. The package has been carefully optimized and should be very efficient, both in terms of run time performance and memory consumption. The main methods are vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.
An interface to spdep to integrate with sf objects and the tidyverse'.
Consolidated data simulation, sample size calculation and analysis functions for several snSMART (small sample sequential, multiple assignment, randomized trial) designs under one library. See Wei, B., Braun, T.M., Tamura, R.N. and Kidwell, K.M. "A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs)." (2018) Statistics in medicine, 37(26), pp.3723-3732 <doi:10.1002/sim.7900>.
Fast Multiplication and Marginalization of Sparse Tables <doi:10.18637/jss.v111.i02>.
Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
Framework to build an individual tree simulator.
Short and understandable commands that generate tabulated, formatted, and rounded survey estimates. Mostly a wrapper for the survey package (Lumley (2004) <doi:10.18637/jss.v009.i08> <https://CRAN.R-project.org/package=survey>) that identifies low-precision estimates using the National Center for Health Statistics (NCHS) presentation standards (Parker et al. (2017) <https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf>, Parker et al. (2023) <doi:10.15620/cdc:124368>).
This package implements the algorithm described in Barron, M., and Li, J. (Not yet published). This algorithm clusters samples from multiple ordered populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseMDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.
This package provides functions for constructing mathematical models of dynamical systems from measured input-output data.
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
An implementation of Simultaneous Truth and Performance Level Estimation (STAPLE) <doi:10.1109/TMI.2004.828354>. This method is used when there are multiple raters for an object, typically an image, and this method fuses these ratings into one rating. It uses an expectation-maximization method to estimate this rating and the individual specificity/sensitivity for each rater.
The skew logistic distribution is a quantile-defined generalisation of the logistic distribution (van Staden and King 2015). Provides random numbers, quantiles, probabilities, densities and density quantiles for the distribution. It provides Quantile-Quantile plots and method of L-Moments estimation (including asymptotic standard errors) for the distribution.