Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a switch-case construct for R', as it is known from other programming languages. It allows to test multiple, similar conditions in an efficient, easy-to-read manner, so nested if-else constructs can be avoided. The switch-case construct is designed as an R function that allows to return values depending on which condition is met and lets the programmer flexibly decide whether or not to leave the switch-case construct after a case block has been executed.
PAM (Partitioning Around Medoids) algorithm application to samples of single cell sequencing techniques with a high number of cells (as many as the computer memory allows). The package uses a binary format to store matrices (either full, sparse or symmetric) in files written in the disk that can contain any data type (not just double) which allows its manipulation when memory is sufficient to load them as int or float, but not as double. The PAM implementation is done in parallel, using several/all the cores of the machine, if it has them. This package shares a great part of its code with packages jmatrix and parallelpam but their functionality is included here so there is no need to install them.
Add indicators (spinner, progress bar, gif) in your shiny applications to show the user that the server is busy. And other tools to let your users know something is happening (send notifications, reports, ...).
This package provides the Fortran code of the R package spam with 64-bit integers. Loading this package together with the R package spam enables the sparse matrix class spam to handle huge sparse matrices with more than 2^31-1 non-zero elements. Documentation is provided in Gerber, Moesinger and Furrer (2017) <doi:10.1016/j.cageo.2016.11.015>.
The systemPipeShiny (SPS) framework comes with many useful utility functions. However, installing the whole framework is heavy and takes some time. If you like only a few useful utility functions from SPS, install this package is enough.
Implementation of the boosting procedure with the simulation and extrapolation approach to address variable selection and estimation for high-dimensional data subject to measurement error in predictors. It can be used to address generalized linear models (GLM) in Chen (2023) <doi: 10.1007/s11222-023-10209-3> and the accelerated failure time (AFT) model in Chen and Qiu (2023) <doi: 10.1111/biom.13898>. Some relevant references include Chen and Yi (2021) <doi:10.1111/biom.13331> and Hastie, Tibshirani, and Friedman (2008, ISBN:978-0387848570).
This package provides functions for performing common tasks when working with slippy map tile service APIs e.g. Google maps, Open Street Map, Mapbox, Stamen, among others. Functionality includes converting from latitude and longitude to tile numbers, determining tile bounding boxes, and compositing tiles to a georeferenced raster image.
Synthesize numeric, categorical, mixed and time series data. Data circumstances including mixed (or zero-inflated) distributions and missing data patterns are reproduced in the synthetic data. A single parameter allows balancing between high-quality synthetic data that represents correlations of the original data and lower quality but more privacy safe synthetic data without correlations. Tuning can be done per variable or for the whole dataset.
This package provides a combined slider and numeric input for usage in a Shiny app. The slider and the numeric input are linked together: each one is updated when the other one changes. Many styling properties are customizable (e.g. colors and size).
This package provides peak functions, which enable us to detect peaks in time series. The methods implemented in this package are based on Girish Keshav Palshikar (2009) <https://www.researchgate.net/publication/228853276_Simple_Algorithms_for_Peak_Detection_in_Time-Series>.
Implement the algorithm provided in scan for estimating the transmission route on railway network using passenger volume. It is a generalization of the scan statistic approach for railway network to identify the hot railway route for transmitting infectious diseases.
This is an implementation of the algorithm described in Section 3 of Hosszejni and Frühwirth-Schnatter (2026) <doi:10.1016/j.jmva.2025.105536>. The algorithm is used to verify that the counting rule CR(r,1) holds for the sparsity pattern of the transpose of a factor loading matrix. As detailed in Section 2 of the same paper, if CR(r,1) holds, then the idiosyncratic variances are generically identified. If CR(r,1) does not hold, then we do not know whether the idiosyncratic variances are identified or not.
This data-driven phylogenetic comparative method fits stabilizing selection models to continuous trait data, building on the ouch methodology of Butler and King (2004) <doi:10.1086/426002>. The main functions fit a series of Hansen models using stepwise AIC, then identify cases of convergent evolution where multiple lineages have shifted to the same adaptive peak. For more information see Ingram and Mahler (2013) <doi:10.1111/2041-210X.12034>.
Monte Carlo simulations of a game-theoretic model for the legal exemption system of the European cartel law are implemented in order to estimate the (mean) deterrent effect of this system. The input and output parameters of the simulated cartel opportunities can be visualized by three-dimensional projections. A description of the model is given in Moritz et al. (2018) <doi:10.1515/bejeap-2017-0235>.
Simulate and plot general experimental crosses. The focus is on simulating genotypes with an aim towards flexibility rather than speed. Meiosis is simulated following the Stahl model, in which chiasma locations are the superposition of two processes: a proportion p coming from a process exhibiting no interference, and the remainder coming from a process following the chi-square model.
Fork of vote_2.3-2', Raftery et al. (2021) <DOI:10.32614/RJ-2021-086>, with additional support for stochastic experimentation.
An interactive document on the topic of basic statistical analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/StatisticsPrimer/>.
Implement different Item Response Theory (IRT) based procedures for the development of static short test forms (STFs) from a test. Two main procedures are considered, specifically the typical IRT-based procedure for the development of STF, and a recently introduced procedure (Epifania, Anselmi & Robusto, 2022 <doi:10.1007/978-3-031-27781-8_7>). The procedures differ in how the most informative items are selected for the inclusion in the STF, either by considering their item information functions without considering any specific level of the latent trait (typical procedure) or by considering their informativeness with respect to specific levels of the latent trait, denoted as theta targets (the newly introduced procedure). Regarding the latter procedure, three methods are implemented for the definition of the theta targets: (i) theta targets are defined by segmenting the latent trait in equal intervals and considering the midpoint of each interval (equal interval procedure, eip), (ii) by clustering the latent trait to obtain unequal intervals and considering the centroids of the clusters as the theta targets (unequal intervals procedure, uip), and (iii) by letting the user set the specific theta targets of interest (user-defined procedure, udp). For further details on the procedure, please refer to Epifania, Anselmi & Robusto (2022) <doi:10.1007/978-3-031-27781-8_7>.
Modern classes for tracking and movement data, building on sf spatial infrastructure, and early theoretical work from Turchin (1998, ISBN: 9780878938476), and Calenge et al. (2009) <doi:10.1016/j.ecoinf.2008.10.002>. Tracking data are series of locations with at least 2-dimensional spatial coordinates (x,y), a time index (t), and individual identification (id) of the object being monitored; movement data are made of trajectories, i.e. the line representation of the path, composed by steps (the straight-line segments connecting successive locations). sftrack is designed to handle movement of both living organisms and inanimate objects.
Users may specify what fundamental qualities of a new study have or have not changed in an attempt to reproduce or replicate an original study. A comparison of the differences is visualized. Visualization approach follows Patil', Peng', and Leek (2016) <doi:10.1101/066803>.
This package provides inference based on the survey package for the wide range of parametric models in the VGAM package.
Estimation and Prediction Functions Using Bayesian Hierarchical Spatial Finlay-Wilkinson Model for Analysis of Multi-Environment Field Trials.
This package provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.
This package provides tools to compute and analyze the set of statistically-equivalent (Gaussian, linear) path models which generate the input precision or (partial) correlation matrix. This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools. The statistical-equivalence set of a given GGM expresses the uncertainty we have about the sign, size and direction of directed relationships based on the weights matrix of the GGM alone. The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi: 10.31234/osf.io/ryg69>.