Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We implement functions to estimate and perform sensitivity analysis to unobserved confounding of direct and indirect effects introduced in Lindmark, de Luna and Eriksson (2018) <doi:10.1002/sim.7620> and Lindmark (2022) <doi:10.1007/s10260-021-00611-4>. The estimation and sensitivity analysis are parametric, based on probit and/or linear regression models. Sensitivity analysis is implemented for unobserved confounding of the exposure-mediator, mediator-outcome and exposure-outcome relationships.
This package provides a fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. strucchangeRcpp features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.
Monte Carlo confidence intervals for free and defined parameters in models fitted in the structural equation modeling package lavaan can be generated using the semmcci package. semmcci has three main functions, namely, MC(), MCMI(), and MCStd(). The output of lavaan is passed as the first argument to the MC() function or the MCMI() function to generate Monte Carlo confidence intervals. Monte Carlo confidence intervals for the standardized estimates can also be generated by passing the output of the MC() function or the MCMI() function to the MCStd() function. A description of the package and code examples are presented in Pesigan and Cheung (2024) <doi:10.3758/s13428-023-02114-4>.
This package provides a collection of recycled and modified R functions to aid in file manipulation, data exploration, wrangling, optimization, and object manipulation. Other functions aid in convenient data visualization, loop progression, software packaging, and installation.
It fits scale mixture of skew-normal linear mixed models using either an expectationâ maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence <doi:10.18637/jss.v115.i07>.
Using any importation code designed for SAS users to read ASCII files into sas7bdat files, this package parses through the INPUT block of a .sas syntax file to design the parameters needed for a read.fwf() function call. This allows the user to specify the location of the ASCII (often a .dat') file and the location of the SAS syntax file, and then load the data frame directly into R in just one step.
Projection pursuit is used to find interesting low-dimensional projections of high-dimensional data by optimizing an index over all possible projections. The spinebil package contains methods to evaluate the performance of projection pursuit index functions using tour methods. A paper describing the methods can be found at <doi:10.1007/s00180-020-00954-8>.
Metapackage for implementing a variety of event-based models, with a focus on spatially explicit models. These include raster-based, event-based, and agent-based models. The core simulation components (provided by SpaDES.core') are built upon a discrete event simulation (DES; see Matloff (2011) ch 7.8.3 <https://nostarch.com/artofr.htm>) framework that facilitates modularity, and easily enables the user to include additional functionality by running user-built simulation modules (see also SpaDES.tools'). Included are numerous tools to visualize rasters and other maps (via quickPlot'), and caching methods for reproducible simulations (via reproducible'). Tools for running simulation experiments are provided by SpaDES.experiment'. Additional functionality is provided by the SpaDES.addins and SpaDES.shiny packages.
This package provides a simulator for reticulate evolution under a birth-death-hybridization process. Here the birth-death process is extended to consider reticulate Evolution by allowing hybridization events to occur. The general purpose simulator allows the modeling of three different reticulate patterns: lineage generative hybridization, lineage neutral hybridization, and lineage degenerative hybridization. Users can also specify hybridization events to be dependent on a trait value or genetic distance. We also extend some phylogenetic tree utility and plotting functions for networks. We allow two different stopping conditions: simulated to a fixed time or number of taxa. When simulating to a fixed number of taxa, the user can simulate under the Generalized Sampling Approach that properly simulates phylogenies when assuming a uniform prior on the root age.
User-friendly framework that enables the training and the evaluation of species distribution models (SDMs). The package implements functions for data driven variable selection and model tuning and includes numerous utilities to display the results. All the functions used to select variables or to tune model hyperparameters have an interactive real-time chart displayed in the RStudio viewer pane during their execution.
The superdiag package provides a comprehensive test suite for testing Markov Chain nonconvergence. It integrates five standard empirical MCMC convergence diagnostics (Gelman-Rubin, Geweke, Heidelberger-Welch, Raftery-Lewis, and Hellinger distance) and plotting functions for trace plots and density histograms. The functions of the package can be used to present all diagnostic statistics and graphs at once for conveniently checking MCMC nonconvergence.
This package provides tools to import survey files in the .sss (triple-s) format. The package provides the function read.sss() that reads the .asc (or .csv') and .sss files of a triple-s survey data file. See also <https://triple-s.org/>.
This package provides infrastructure functionalities such as missing value treatment, information value calculation, GINI calculation etc. which are used for developing a traditional credit scorecard as well as a machine learning based model. The functionalities defined are standard steps for any credit underwriting scorecard development, extensively used in financial domain.
Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
Summary ellipses superimposed on a scatter plot contain all bi-variate summary statistics for regression analysis. Furthermore, the outer ellipse flags potential outliers. Multiple groups can be compared in terms of centers and spreads as illustrated in the examples.
Access functionality of the heatmaply package through Shiny UI'.
We designed this package to provides several functions for area and subarea level of small area estimation under Twofold Subarea Level Model using hierarchical Bayesian (HB) method with Univariate Normal distribution for variables of interest. Some dataset simulated by a data generation are also provided. The rjags package is employed to obtain parameter estimates using Gibbs Sampling algorithm. Model-based estimators involves the HB estimators which include the mean, the variation of mean, and the quantile. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, and Erciulescu et al.(2019) <doi:10.1111/rssa.12390>.
This package implements multiple consistent scoring functions (Gneiting T (2011) <doi:10.1198/jasa.2011.r10138>) for assessing point forecasts and point predictions. Detailed documentation of scoring functions properties is included for facilitating interpretation of results.
Create Upset plots using a combination of ggplot2 and patchwork'.
Take screenshots from R command and locate an image position.
Proposes application of spectral analysis and jack-knife resampling for multivariate sequence forecasting. The application allows for a fast random search in a compact space of hyper-parameters composed by Sequence Length and Jack-Knife Leave-N-Out.
This package implements the SoftBart model of described by Linero and Yang (2018) <doi:10.1111/rssb.12293>, with the optional use of a sparsity-inducing prior to allow for variable selection. For usability, the package maintains the same style as the BayesTree package.
Implementation of Sparse-group SLOPE (SGS) (Feser and Evangelou (2023) <doi:10.48550/arXiv.2305.09467>) models. Linear and logistic regression models are supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported. In addition, a general Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) implementation is provided. Group SLOPE (gSLOPE) (Brzyski et al. (2019) <doi:10.1080/01621459.2017.1411269>) and group-based OSCAR models (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) are also implemented. All models are available with strong screening rules (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) for computational speed-up.
This package provides functions to take samples of data, sample size estimation and getting useful estimators such as total, mean, proportion about its population using simple random, stratified, systematic and cluster sampling.