Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the ST-DBSCAN (spatio-temporal density-based spatial clustering of applications with noise) clustering algorithm for detecting spatially and temporally dense regions in point data, with a fast C++ backend via Rcpp'. Birant and Kut (2007) <doi:10.1016/j.datak.2006.01.013>.
This package provides functions to install SciViews additions to R, and more tools.
Univariate time series forecasting with STL decomposition based Extreme Learning Machine hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Convert laboratory data to the Portuguese Information System for Water Resources SNIRH file format. SNIRH is Portugal's national water resources information system <https://snirh.apambiente.pt/>. The package validates station data, converts parameters and units, and generates compliant output files for data submission.
This package provides a new reduced-rank LDA method which works for high dimensional multi-class data.
This package provides a collection of statistical and geometrical tools including the aligned rank transform (ART; Higgins et al. 1990 <doi:10.4148/2475-7772.1443>; Peterson 2002 <doi:10.22237/jmasm/1020255240>; Wobbrock et al. 2011 <doi:10.1145/1978942.1978963>), 2-D histograms and histograms with overlapping bins, a function for making all possible formulae within a set of constraints, amongst others.
This package provides the Fortran code of the R package spam with 64-bit integers. Loading this package together with the R package spam enables the sparse matrix class spam to handle huge sparse matrices with more than 2^31-1 non-zero elements. Documentation is provided in Gerber, Moesinger and Furrer (2017) <doi:10.1016/j.cageo.2016.11.015>.
Extract glyph information from font data, and translate the outline curves to flattened paths or tessellated polygons. The converted data is returned as a data.frame in easy-to-plot format.
This package provides an easy framework for Monte Carlo simulation in structural equation modeling, which can be used for various purposes, such as such as model fit evaluation, power analysis, or missing data handling and planning.
This package provides methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) "Predictive Analytics for Energy Efficiency and Energy Retailing" <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9> "Enhancing energy efficiency in the residential sector with smart meter data analytics".
Implementations self-normalization (SN) based algorithms for change-points estimation in time series data. This comprises nested local-window algorithms for detecting changes in both univariate and multivariate time series developed in Zhao, Jiang and Shao (2022) <doi:10.1111/rssb.12552>.
This package provides useful UI components and input widgets for Shiny applications. The offered components allow to apply non-standard operations and view to your Shiny application, but also help to overcome common performance issues.
Shows the scatter plot along with the fitted regression lines. It depicts min, max, the three quartiles, mean, and sd for each variable. It also depicts sd-line, sd-box, r, r-square, prediction boundaries, and regression outliers.
Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020) <doi:10.1007/s11336-019-09693-2>.
Send syslog protocol messages to a remote syslog server specified by host name and TCP network port.
SqueezeMeta is a versatile pipeline for the automated analysis of metagenomics/metatranscriptomics data (<https://github.com/jtamames/SqueezeMeta>). This package provides functions loading SqueezeMeta results into R, filtering them based on different criteria, and visualizing the results using basic plots. The SqueezeMeta project (and any subsets of it generated by the different filtering functions) is parsed into a single object, whose different components (e.g. tables with the taxonomic or functional composition across samples, contig/gene abundance profiles) can be easily analyzed using other R packages such as vegan or DESeq2'. The methods in this package are further described in Puente-Sánchez et al., (2020) <doi:10.1186/s12859-020-03703-2>.
This package provides function for area level of small area estimation using hierarchical Bayesian (HB) method with Zero-Inflated Binomial distribution for variables of interest. Some dataset produced by a data generation are also provided. The rjags package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean.
An extension of the AlphaSimR package (<https://cran.r-project.org/package=AlphaSimR>) for stochastic simulations of honeybee populations and breeding programmes. SIMplyBee enables simulation of individual bees that form a colony, which includes a queen, fathers (drones the queen mated with), virgin queens, workers, and drones. Multiple colony can be merged into a population of colonies, such as an apiary or a whole country of colonies. Functions enable operations on castes, colony, or colonies, to ease R scripting of whole populations. All AlphaSimR functionality with respect to genomes and genetic and phenotype values is available and further extended for honeybees, including haplo-diploidy, complementary sex determiner locus, colony events (swarming, supersedure, etc.), and colony phenotype values.
In Switzerland, the landscape of municipalities is changing rapidly mainly due to mergers. The Swiss Municipal Data Merger Tool automatically detects these mutations and maps municipalities over time, i.e. municipalities of an old state to municipalities of a new state. This functionality is helpful when working with datasets that are based on different spatial references. The package's idea and use case is discussed in the following article: <doi:10.1111/spsr.12487>.
Fits linear difference-in-differences models in scenarios where intervention roll-outs are staggered over time. The package implements a version of an approach proposed by Sun and Abraham (2021) <doi:10.1016/j.jeconom.2020.09.006> to estimate cohort- and time-since-treatment specific difference-in-differences parameters, and it provides convenience functions both for specifying the model and for flexibly aggregating coefficients to answer a variety of research questions.
This package provides a graphical and automated pipeline for the analysis of short time-series in R ('santaR'). This approach is designed to accommodate asynchronous time sampling (i.e. different time points for different individuals), inter-individual variability, noisy measurements and large numbers of variables. Based on a smoothing splines functional model, santaR is able to detect variables highlighting significantly different temporal trajectories between study groups. Designed initially for metabolic phenotyping, santaR is also suited for other Systems Biology disciplines. Command line and graphical analysis (via a shiny application) enable fast and parallel automated analysis and reporting, intuitive visualisation and comprehensive plotting options for non-specialist users.
Set of tools to import, summarize, wrangle, and visualize data. These functions were originally written based on the needs of the various synthesis working groups that were supported by the National Center for Ecological Analysis and Synthesis (NCEAS). These tools are meant to be useful inside and outside of the context for which they were designed.
Monte Carlo sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2024) <doi:10.1080/01621459.2024.2395586>.
This package provides functions to estimate kernel-smoothed spatial and spatio-temporal densities and relative risk functions, and perform subsequent inference. Methodological details can be found in the accompanying tutorial: Davies et al. (2018) <DOI:10.1002/sim.7577>.