_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-ssabss 0.1.1
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-tsbss@1.0.0 r-jade@2.0-4 r-ictest@0.3-6 r-ggplot2@4.0.1 r-bssprep@0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=ssaBSS
Licenses: GPL 2+
Build system: r
Synopsis: Stationary Subspace Analysis
Description:

Stationary subspace analysis (SSA) is a blind source separation (BSS) variant where stationary components are separated from non-stationary components. Several SSA methods for multivariate time series are provided here (Flumian et al. (2021); Hara et al. (2010) <doi:10.1007/978-3-642-17537-4_52>) along with functions to simulate time series with time-varying variance and autocovariance (Patilea and Raissi(2014) <doi:10.1080/01621459.2014.884504>).

r-semnova 0.1-6
Propagated dependencies: r-matrix@1.7-4 r-mass@7.3-65 r-lavaan@0.6-20
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=semnova
Licenses: GPL 2+
Build system: r
Synopsis: Latent Repeated Measures ANOVA
Description:

Latent repeated measures ANOVA (L-RM-ANOVA) is a structural equation modeling based alternative to traditional repeated measures ANOVA. L-RM-ANOVA extends the latent growth components approach by Mayer et al. (2012) <doi:10.1080/10705511.2012.713242> and introduces latent variables to repeated measures analysis.

r-simode 1.2.2
Propagated dependencies: r-quadprog@1.5-8 r-pracma@2.4.6 r-ncvreg@3.16.0 r-glmnet@4.1-10 r-desolve@1.40
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=simode
Licenses: GPL 2+
Build system: r
Synopsis: Statistical Inference for Systems of Ordinary Differential Equations using Separable Integral-Matching
Description:

This package implements statistical inference for systems of ordinary differential equations, that uses the integral-matching criterion and takes advantage of the separability of parameters, in order to obtain initial parameter estimates for nonlinear least squares optimization. Dattner & Yaari (2018) <arXiv:1807.04202>. Dattner et al. (2017) <doi:10.1098/rsif.2016.0525>. Dattner & Klaassen (2015) <doi:10.1214/15-EJS1053>.

r-sweater 0.1.8
Propagated dependencies: r-rcpp@1.1.0 r-quanteda@4.3.1 r-purrr@1.2.0 r-proxy@0.4-27 r-liblinear@2.10-24 r-data-table@1.17.8 r-combinat@0.0-8 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/gesistsa/sweater
Licenses: GPL 3+
Build system: r
Synopsis: Speedy Word Embedding Association Test and Extras Using R
Description:

Conduct various tests for evaluating implicit biases in word embeddings: Word Embedding Association Test (Caliskan et al., 2017), <doi:10.1126/science.aal4230>, Relative Norm Distance (Garg et al., 2018), <doi:10.1073/pnas.1720347115>, Mean Average Cosine Similarity (Mazini et al., 2019) <arXiv:1904.04047>, SemAxis (An et al., 2018) <arXiv:1806.05521>, Relative Negative Sentiment Bias (Sweeney & Najafian, 2019) <doi:10.18653/v1/P19-1162>, and Embedding Coherence Test (Dev & Phillips, 2019) <arXiv:1901.07656>.

r-ssrm-logmer 0.1
Propagated dependencies: r-statmod@1.5.1 r-sfsmisc@1.1-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=ssrm.logmer
Licenses: GPL 2
Build system: r
Synopsis: Sample Size Determination for Longitudinal Designs with Binary Outcome
Description:

This package provides the necessary sample size for a longitudinal study with binary outcome in order to attain a pre-specified power while strictly maintaining the Type I error rate. Kapur K, Bhaumik R, Tang XC, Hur K, Reda DJ, Bhaumik D (2014) <doi:10.1002/sim.6203>.

r-stablepopulation 1.0.3
Propagated dependencies: r-readxl@1.4.5 r-openxlsx@4.2.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=StablePopulation
Licenses: GPL 3
Build system: r
Synopsis: Calculates Alpha for a Stable Population
Description:

This package provides tools to calculate the alpha parameter of the Weibull distribution, given beta and the age-specific fertility of a species, so that the population remains stable and stationary. Methods are inspired by "Survival profiles from linear models versus Weibull models: Estimating stable and stationary population structures for Pleistocene large mammals" (Martà n-González et al. 2019) <doi:10.1016/j.jasrep.2019.03.031>.

r-slouch 2.1.5
Propagated dependencies: r-memoise@2.0.1 r-crayon@1.5.3 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/kopperud/slouch
Licenses: GPL 2
Build system: r
Synopsis: Stochastic Linear Ornstein-Uhlenbeck Comparative Hypotheses
Description:

An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.

r-stagepop 1.1-2
Propagated dependencies: r-pbsddesolve@1.13.7 r-desolve@1.40
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/HelenKettle/StagePop
Licenses: GPL 3 FSDG-compatible
Build system: r
Synopsis: Modelling the Population Dynamics of a Stage-Structured Species in Continuous Time
Description:

This package provides facilities to implement and run population models of stage-structured species...

r-srda 1.0.0
Propagated dependencies: r-mvtnorm@1.3-3 r-matrix@1.7-4 r-foreach@1.5.2 r-elasticnet@1.3 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sRDA
Licenses: Expat
Build system: r
Synopsis: Sparse Redundancy Analysis
Description:

Sparse redundancy analysis for high dimensional (biomedical) data. Directional multivariate analysis to express the maximum variance in the predicted data set by a linear combination of variables of the predictive data set. Implemented in a partial least squares framework, for more details see Csala et al. (2017) <doi:10.1093/bioinformatics/btx374>.

r-scatterdensity 0.1.1
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-pracma@2.4.6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.deepbionics.org/
Licenses: GPL 3
Build system: r
Synopsis: Density Estimation and Visualization of 2D Scatter Plots
Description:

The user has the option to utilize the two-dimensional density estimation techniques called smoothed density published by Eilers and Goeman (2004) <doi:10.1093/bioinformatics/btg454>, and pareto density which was evaluated for univariate data by Thrun, Gehlert and Ultsch, 2020 <doi:10.1371/journal.pone.0238835>. Moreover, it provides visualizations of the density estimation in the form of two-dimensional scatter plots in which the points are color-coded based on increasing density. Colors are defined by the one-dimensional clustering technique called 1D distribution cluster algorithm (DDCAL) published by Lux and Rinderle-Ma (2023) <doi:10.1007/s00357-022-09428-6>.

r-synchwave 1.1.2
Propagated dependencies: r-fields@17.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SynchWave
Licenses: LGPL 2.0+
Build system: r
Synopsis: Synchrosqueezed Wavelet Transform
Description:

The synchrosqueezed wavelet transform is implemented. The package is a translation of MATLAB Synchrosqueezing Toolbox, version 1.1 originally developed by Eugene Brevdo (2012). The C code for curve_ext was authored by Jianfeng Lu, and translated to Fortran by Dongik Jang. Synchrosqueezing is based on the papers: [1] Daubechies, I., Lu, J. and Wu, H. T. (2011) Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 30. 243-261. [2] Thakur, G., Brevdo, E., Fukar, N. S. and Wu, H-T. (2013) The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Processing, 93, 1079-1094.

r-shinymgr 1.1.0
Propagated dependencies: r-shinyjs@2.1.0 r-shinydashboard@0.7.3 r-shiny@1.11.1 r-rsqlite@2.4.4 r-renv@1.1.5 r-reactable@0.4.5 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://code.usgs.gov/vtcfwru/shinymgr
Licenses: GPL 3
Build system: r
Synopsis: Framework for Building, Managing, and Stitching 'shiny' Modules into Reproducible Workflows
Description:

This package provides a unifying framework for managing and deploying shiny applications that consist of modules, where an "app" is a tab-based workflow that guides a user step-by-step through an analysis. The shinymgr app builder "stitches" shiny modules together so that outputs from one module serve as inputs to the next, creating an analysis pipeline that is easy to implement and maintain. Users of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can be ingested into an R Markdown report for rapid reporting. In short, developers use the shinymgr framework to write modules and seamlessly combine them into shiny apps, and users of these apps can execute reproducible analyses that can be incorporated into reports for rapid dissemination.

r-summariser 2.3.0
Propagated dependencies: r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/condwanaland/summariser
Licenses: GPL 3
Build system: r
Synopsis: Easy Calculation and Visualisation of Confidence Intervals
Description:

This package provides functions to speed up the exploratory analysis of simple datasets using dplyr'. Functions are provided to do the common tasks of calculating confidence intervals.

r-slos 1.0.1
Propagated dependencies: r-ranger@0.17.0 r-mlmetrics@1.1.3 r-magrittr@2.0.4 r-httr@1.4.7 r-ggplot2@4.0.1 r-ems@1.3.11 r-dplyr@1.1.4 r-caretensemble@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SLOS
Licenses: Expat
Build system: r
Synopsis: ICU Length of Stay Prediction and Efficiency Evaluation
Description:

This package provides tools for predicting ICU length of stay and assessing ICU efficiency. It is based on the methodologies proposed by Peres et al. (2022, 2023), which utilize data-driven approaches for modeling and validation, offering insights into ICU performance and patient outcomes. References: Peres et al. (2022)<https://pubmed.ncbi.nlm.nih.gov/35988701/>, Peres et al. (2023)<https://pubmed.ncbi.nlm.nih.gov/37922007/>. More information: <https://github.com/igor-peres/ICU-Length-of-Stay-Prediction>.

r-srs 0.2.3
Propagated dependencies: r-vegan@2.7-2 r-shinycssloaders@1.1.0 r-shinybusy@0.3.3 r-shiny@1.11.1 r-dt@0.34.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SRS
Licenses: CC-BY-SA 4.0
Build system: r
Synopsis: Scaling with Ranked Subsampling
Description:

Analysis of species count data in ecology often requires normalization to an identical sample size. Rarefying (random subsampling without replacement), which is a popular method for normalization, has been widely criticized for its poor reproducibility and potential distortion of the community structure. In the context of microbiome count data, researchers explicitly advised against the use of rarefying. An alternative to rarefying is scaling with ranked subsampling (SRS). SRS consists of two steps. In the first step, the total counts for all OTUs (operational taxonomic units) or species in each sample are divided by a scaling factor chosen in such a way that the sum of the scaled counts Cscaled equals Cmin. In the second step, the non-integer Cscaled values are converted into integers by an algorithm that we dub ranked subsampling. The Cscaled value for each OTU or species is split into the integer part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled - Cints). Since the sum of Cint is smaller or equal to Cmin, additional delta C = Cmin - the sum of Cint counts have to be added to the library to reach the total count of Cmin. This is achieved as follows. OTUs are ranked in the descending order of their Cfrac values. Beginning with the OTU of the highest rank, single count per OTU is added to the normalized library until the total number of added counts reaches delta C and the sum of all counts in the normalized library equals Cmin. When the lowest Cfrag involved in picking delta C counts is shared by several OTUs, the OTUs used for adding a single count to the library are selected in the order of their Cint values. This selection minimizes the effect of normalization on the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly without replacement. See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details.

r-sqlhelper 0.2.1
Propagated dependencies: r-yaml@2.3.10 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-sf@1.0-23 r-rlang@1.1.6 r-rappdirs@0.3.3 r-purrr@1.2.0 r-pool@1.0.4 r-glue@1.8.0 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://majerr.github.io/sqlhelper/dev/
Licenses: GPL 3+
Build system: r
Synopsis: Easier 'SQL' Integration
Description:

Execute files of SQL and manage database connections. SQL statements and queries may be interpolated with string literals. Execution of individual statements and queries may be controlled with keywords. Multiple connections may be defined with YAML and accessed by name.

r-sfar 1.0.1
Propagated dependencies: r-ucminf@1.2.2 r-trustoptim@0.8.7.4 r-texreg@1.39.5 r-sandwich@3.1-1 r-randtoolbox@2.0.5 r-qrng@0.0-11 r-plm@2.6-7 r-nleqslv@3.3.5 r-mnorm@1.2.2 r-maxlik@1.5-2.1 r-marqlevalg@2.0.8 r-formula@1.2-5 r-fastghquad@1.0.1 r-cubature@2.1.4-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/hdakpo/sfaR
Licenses: GPL 3+
Build system: r
Synopsis: Stochastic Frontier Analysis Routines
Description:

Maximum likelihood estimation for stochastic frontier analysis (SFA) of production (profit) and cost functions. The package includes the basic stochastic frontier for cross-sectional or pooled data with several distributions for the one-sided error term (i.e., Rayleigh, gamma, Weibull, lognormal, uniform, generalized exponential and truncated skewed Laplace), the latent class stochastic frontier model (LCM) as described in Dakpo et al. (2021) <doi:10.1111/1477-9552.12422>, for cross-sectional and pooled data, and the sample selection model as described in Greene (2010) <doi:10.1007/s11123-009-0159-1>, and applied in Dakpo et al. (2021) <doi:10.1111/agec.12683>. Several possibilities in terms of optimization algorithms are proposed.

r-styperidge-reg 0.1.0
Propagated dependencies: r-stype-est@0.1.0 r-ridgregextra@0.1.1 r-mctest@1.3.2 r-isdals@3.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/filizkrdg/Styperidge.reg
Licenses: Expat
Build system: r
Synopsis: S-Type Ridge Regression
Description:

This package implements S-type ridge regression, a robust and multicollinearity-aware linear regression estimator that combines S-type robust weighting (via the Stype.est package) with ridge penalization; automatically selects the ridge parameter using the ridgregextra approach targeting a close to 1 variance inflation factor (VIF), and returns comprehensive outputs (coefficients, fitted values, residuals, mean squared error (MSE), etc.) with an easy x/y interface and optional user-supplied weights. See Sazak and Mutlu (2021) <doi:10.1080/03610918.2021.1928196>, Karadag et al. (2023) <https://CRAN.R-project.org/package=ridgregextra> and Sazak et al. (2025) <https://CRAN.R-project.org/package=Stype.est>.

r-splitknockoff 2.1
Propagated dependencies: r-rspectra@0.16-2 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-mass@7.3-65 r-latex2exp@0.9.6 r-glmnet@4.1-10 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SplitKnockoff
Licenses: Expat
Build system: r
Synopsis: Split Knockoffs for Structural Sparsity
Description:

Split Knockoff is a data adaptive variable selection framework for controlling the (directional) false discovery rate (FDR) in structural sparsity, where variable selection on linear transformation of parameters is of concern. This proposed scheme relaxes the linear subspace constraint to its neighborhood, often known as variable splitting in optimization. Simulation experiments can be reproduced following the Vignette. Split Knockoffs is first defined in Cao et al. (2021) <doi:10.48550/arXiv.2103.16159>.

r-simvitd 1.0.3
Propagated dependencies: r-simpleboot@1.1-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SimVitD
Licenses: GPL 2+
Build system: r
Synopsis: Simulation Tools for Planning Vitamin D Studies
Description:

Simulation tools for planning Vitamin D studies. Individual vitamin D status profiles are simulated, modelling population heterogeneity in trial arms. Exposures to infectious agents are generated, with infection depending on vitamin D status.

r-snplist 0.18.3
Propagated dependencies: r-rsqlite@2.4.4 r-rcpp@1.1.0 r-r-utils@2.13.0 r-dbi@1.2.3 r-biomart@2.66.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=snplist
Licenses: GPL 3
Build system: r
Synopsis: Tools to Create Gene Sets
Description:

This package provides a set of functions to create SQL tables of gene and SNP information and compose them into a SNP Set, for example to export to a PLINK set.

r-siamodules 0.1.3
Propagated dependencies: r-yaml@2.3.10 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-shinyjs@2.1.0 r-shinyitemanalysis@1.5.5 r-shiny@1.11.1 r-scales@1.4.0 r-rlang@1.1.6 r-purrr@1.2.0 r-plotly@4.11.0 r-mirtcat@1.14 r-mirt@1.45.1 r-lme4@1.1-37 r-glue@1.8.0 r-ggplot2@4.0.1 r-forcats@1.0.1 r-dt@0.34.0 r-dplyr@1.1.4 r-difnlr@1.5.2-2 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://ShinyItemAnalysis.org
Licenses: GPL 3
Build system: r
Synopsis: Modules for 'ShinyItemAnalysis'
Description:

Package including additional modules for interactive ShinyItemAnalysis application for the psychometric analysis of educational tests, psychological assessments, health-related and other types of multi-item measurements, or ratings from multiple raters.

r-smlmkalman 0.1.1
Propagated dependencies: r-truncnorm@1.0-9 r-spdep@1.4-1 r-scales@1.4.0 r-pracma@2.4.6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=smlmkalman
Licenses: GPL 2
Build system: r
Synopsis: Generation and Tracking of Super-Resolution Filamentous Datasets
Description:

This package provides a pair of functions that allow for the generation and tracking of coordinate data clouds without a time dimension, primarily for use in super-resolution plant micro-tubule image segmentation.

r-sparseindextracking 0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://CRAN.R-project.org/package=sparseIndexTracking
Licenses: GPL 3 FSDG-compatible
Build system: r
Synopsis: Design of Portfolio of Stocks to Track an Index
Description:

Computation of sparse portfolios for financial index tracking, i.e., joint selection of a subset of the assets that compose the index and computation of their relative weights (capital allocation). The level of sparsity of the portfolios, i.e., the number of selected assets, is controlled through a regularization parameter. Different tracking measures are available, namely, the empirical tracking error (ETE), downside risk (DR), Huber empirical tracking error (HETE), and Huber downside risk (HDR). See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Feng, and D. P. Palomar, "Sparse Portfolios for High-Dimensional Financial Index Tracking," IEEE Trans. on Signal Processing, vol. 66, no. 1, pp. 155-170, Jan. 2018. <doi:10.1109/TSP.2017.2762286>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283