Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The goal of safejoin is to guarantee that when performing joins extra rows are not added to your data. safejoin provides a wrapper around dplyr::left_join that will raise an error when extra rows are unexpectedly added to your data. This can be useful when working with data where you expect there to be a many to one relationship but you are not certain the relationship holds.
This package provides wrappers for common activity patterns in simmer trajectories.
Allows to map species richness and endemism based on stacked species distribution models (SSDM). Individuals SDMs can be created using a single or multiple algorithms (ensemble SDMs). For each species, an SDM can yield a habitat suitability map, a binary map, a between-algorithm variance map, and can assess variable importance, algorithm accuracy, and between- algorithm correlation. Methods to stack individual SDMs include summing individual probabilities and thresholding then summing. Thresholding can be based on a specific evaluation metric or by drawing repeatedly from a Bernoulli distribution. The SSDM package also provides a user-friendly interface.
Complementary indexes calculation to the Outlying Mean Index analysis to explore niche shift of a community and biological constraint within an Euclidean space, with graphical displays. For details see Karasiewicz et al. (2017) <doi:10.7717/peerj.3364>.
sqliter helps users, mainly data munging practioneers, to organize their sql calls in a clean structure. It simplifies the process of extracting and transforming data into useful formats.
An extension of animate.css that allows user to easily add animations to any UI element in shiny app using the elements id.
Simulate and plot general experimental crosses. The focus is on simulating genotypes with an aim towards flexibility rather than speed. Meiosis is simulated following the Stahl model, in which chiasma locations are the superposition of two processes: a proportion p coming from a process exhibiting no interference, and the remainder coming from a process following the chi-square model.
This package implements the algorithm described in Guo, H., and Li, J., "scSorter: assigning cells to known cell types according to known marker genes". Cluster cells to known cell types based on marker genes specified for each cell type.
Easily analyze and visualize the performance of symptom checkers. This package can be used to gain comprehensive insights into the performance of single symptom checkers or the performance of multiple symptom checkers. It can be used to easily compare these symptom checkers across several metrics to gain an understanding of their strengths and weaknesses. The metrics are developed in Kopka et al. (2023) <doi:10.1177/20552076231194929>.
The function generates and plots random snowflakes. Each snowflake is defined by a given diameter, width of the crystal, color, and random seed. Snowflakes are plotted in such way that they always remain round, no matter what the aspect ratio of the plot is. Snowflakes can be created using transparent colors, which creates a more interesting, somewhat realistic, image. Images of the snowflakes can be separately saved as svg files and used in websites as static or animated images.
This package provides a group of functions to scrape data from different websites, for academic purposes.
Includes built-in methods for generating long SQL CASE statements, and other SQL statements that may otherwise be arduous to construct by hand.The generated statement can easily be concatenated to string literals to form queries to SQL'-like databases, such as when using the RODBC package. The current methods include casewhen() for building CASE statements, inlist() for building IN statements, and updatetable() for building UPDATE statements.
This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA exponent), GUEDES et al. (2019) <doi:10.1016/j.physa.2019.04.132> , Detrended cross-correlation coefficient (RHODCCA), GUEDES & ZEBENDE (2019) <doi:10.1016/j.physa.2019.121286>, DMCA cross-correlation coefficient and Detrended multiple cross-correlation coefficient (DMC), GUEDES & SILVA-FILHO & ZEBENDE (2018) <doi:10.1016/j.physa.2021.125990>, both with sliding windows approach.
This package provides a user-friendly framework for estimating a wide variety of cross-sectional and panel stochastic frontier models. Suitable for a broad range of applications, the implementation offers extensive flexibility in specification and estimation techniques.
Data sets and code blocks for the book Statistical Analysis of Network Data with R, 2nd Edition'.
This package provides functions and datasets from Jones, O.D., R. Maillardet, and A.P. Robinson. 2014. An Introduction to Scientific Programming and Simulation, Using R. 2nd Ed. Chapman And Hall/CRC.
This package implements survival-model-based imputation for censored laboratory measurements, including Tobit-type models with several distribution options. Suitable for data with values below detection or quantification limits, the package identifies the best-fitting distribution and produces realistic imputations that respect the censoring thresholds.
This package provides the necessary sample size for a longitudinal study with binary outcome in order to attain a pre-specified power while strictly maintaining the Type I error rate. Kapur K, Bhaumik R, Tang XC, Hur K, Reda DJ, Bhaumik D (2014) <doi:10.1002/sim.6203>.
The SoundexBR package provides an algorithm for decoding names into phonetic codes, as pronounced in Portuguese. The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling. The algorithm mainly encodes consonants; a vowel will not be encoded unless it is the first letter. The soundex code resultant consists of a four digits long string composed by one letter followed by three numerical digits: the letter is the first letter of the name, and the digits encode the remaining consonants.
An iterative feature selection method that internally utilizes various Machine Learning methods that have embedded feature reduction in order to shrink down the feature space into a small and yet robust set.
This package implements sparse generalized factor models (sparseGFM) for dimension reduction and variable selection in high-dimensional data with automatic adaptation to weak factor scenarios. The package supports multiple data types (continuous, count, binary) through generalized linear model frameworks and handles missing values automatically. It provides 12 different penalty functions including Least Absolute Shrinkage and Selection Operator (Lasso), adaptive Lasso, Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Penalty (MCP), group Lasso, and their adaptive versions for inducing row-wise sparsity in factor loadings. Key features include cross-validation for regularization parameter selection using Sparsity Information Criterion (SIC), automatic determination of the number of factors via multiple information criteria, and specialized algorithms for row-sparse loading structures. The methodology employs alternating minimization with Singular Value Decomposition (SVD)-based identifiability constraints and is particularly effective for high-dimensional applications in genomics, economics, and social sciences where interpretable sparse dimension reduction is crucial. For penalty functions, see Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Fan and Li (2001) <doi:10.1198/016214501753382273>, and Zhang (2010) <doi:10.1214/09-AOS729>.
Hierarchical models for the analysis of species-area relationships (SARs) by combining several data sets and covariates; with a global data set combining individual SAR studies; as described in Solymos and Lele (2012) <doi:10.1111/j.1466-8238.2011.00655.x>.
This package contains functions for statistical data analysis based on spatially-clustered techniques. The package allows estimating the spatially-clustered spatial regression models presented in Cerqueti, Maranzano \& Mattera (2024), "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe", arXiv preprint 2407.15874 <doi:10.48550/arXiv.2407.15874>. Specifically, the current release allows the estimation of the spatially-clustered linear regression model (SCLM), the spatially-clustered spatial autoregressive model (SCSAR), the spatially-clustered spatial Durbin model (SCSEM), and the spatially-clustered linear regression model with spatially-lagged exogenous covariates (SCSLX). From release 0.0.2, the library contains functions to estimate spatial clustering based on Adiajacent Matrix K-Means (AMKM) as described in Zhou, Liu \& Zhu (2019), "Weighted adjacent matrix for K-means clustering", Multimedia Tools and Applications, 78 (23) <doi:10.1007/s11042-019-08009-x>.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.