Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Short and understandable commands that generate tabulated, formatted, and rounded survey estimates. Mostly a wrapper for the survey package (Lumley (2004) <doi:10.18637/jss.v009.i08> <https://CRAN.R-project.org/package=survey>) that identifies low-precision estimates using the National Center for Health Statistics (NCHS) presentation standards (Parker et al. (2017) <https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf>, Parker et al. (2023) <doi:10.15620/cdc:124368>).
Carries out a two-level sample selection where the possibility of an initially selected site not wanting to participate is anticipated, and the site is optimally replaced. The procedure aims to reduce bias (and/or loss of external validity) with respect to the target population. In selecting units and sub-units, sitepickR uses the cube method developed by Deville & Tillé', (2004) <http://www.math.helsinki.fi/msm/banocoss/Deville_Tille_2004.pdf> and described in Tillé (2011) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2011002/article/11609-eng.pdf?st=5-sx8Q8n>. The cube method is a probability sampling method that is designed to satisfy criteria for balance between the sample and the population. Recent research has shown that this method performs well in simulations for studies of educational programs (see Fay & Olsen (2021, under review). To implement the cube method, sitepickR uses the sampling R package <https://cran.r-project.org/package=sampling>. To implement statistical matching, sitepickR uses the MatchIt R package <https://cran.r-project.org/package=MatchIt>.
Generates multiple imputed datasets from a substantive model compatible fully conditional specification model for time-to-event data. Our method assumes that the censoring process also depends on the covariates with missing values. Details will be available in an upcoming publication.
Flexibly simulates a dataset with time-varying covariates with user-specified exchangeable correlation structures across and within clusters. Covariates can be normal or binary and can be static within a cluster or time-varying. Time-varying normal variables can optionally have linear trajectories within each cluster. See ?make_one_dataset for the main wrapper function. See Montez-Rath et al. <arXiv:1709.10074> for methodological details.
Taxonomic dictionaries, formative element lists, and functions related to the maintenance, development and application of U.S. Soil Taxonomy. Data and functionality are based on official U.S. Department of Agriculture sources including the latest edition of the Keys to Soil Taxonomy. Descriptions and metadata are obtained from the National Soil Information System or Soil Survey Geographic databases. Other sources are referenced in the data documentation. Provides tools for understanding and interacting with concepts in the U.S. Soil Taxonomic System. Most of the current utilities are for working with taxonomic concepts at the "higher" taxonomic levels: Order, Suborder, Great Group, and Subgroup.
This package provides a set of functions used in teaching STATS 201/208 Data Analysis at the University of Auckland. The functions are designed to make parts of R more accessible to a large undergraduate population who are mostly not statistics majors.
The code computes the structural intervention distance (SID) between a true directed acyclic graph (DAG) and an estimated DAG. Definition and details about the implementation can be found in J. Peters and P. Bühlmann: "Structural intervention distance (SID) for evaluating causal graphs", Neural Computation 27, pages 771-799, 2015 <doi:10.1162/NECO_a_00708>.
Linear mixed models for complex survey data, by pairwise composite likelihood, as described in Lumley & Huang (2023) <arXiv:2311.13048>. Supports nested and crossed random effects, and correlated random effects as in genetic models. Allows for multistage sampling and for other designs where pairwise sampling probabilities are specified or can be calculated.
This package provides functions for the Skellam distribution, including: density (pmf), cdf, quantiles and regression.
Data on the Spy vs. Spy comic strip of Mad magazine, created and written by Antonio Prohias.
This package implements the "Residual (Sur)Realism" algorithm described by Stefanski (2007) <doi:10.1198/000313007X190079> to generate datasets that reveal hidden images or messages in their residual plots. It offers both predefined datasets and tools to embed custom text or images into residual structures. Allowing users to create intriguing visual demonstrations for teaching model diagnostics.
In a scatterplot where the response variable is Gaussian, Poisson or binomial, we consider the case in which the mean function is smooth with a change-point, which is a mode, an inflection point or a jump point. The main routine estimates the mean curve and the change-point as well using shape-restricted B-splines. An optional subroutine delivering a bootstrap confidence interval for the change-point is incorporated in the main routine.
Algorithms for fitting scaled sparse linear regression and estimating precision matrices.
This package performs sensitivity analysis for Structural Equation Modeling (SEM). It determines which sample points need to be removed for the sign of a specific path in the SEM model to change, thus assessing the robustness of the model. Methodological manuscript in preparation.
This package provides functions and data sets for data sharpening. Nonparametric regressions are computed subject to smoothness and other kinds of penalties.
This package provides functions for analysis of network objects, which are imported or simulated by the package. The non-parametric methods of analysis center on snowball and bootstrap sampling for estimating functions of network degree distribution. For other parameters of interest, see, e.g., bootnet package.
This package provides a graphical and automated pipeline for the analysis of short time-series in R ('santaR'). This approach is designed to accommodate asynchronous time sampling (i.e. different time points for different individuals), inter-individual variability, noisy measurements and large numbers of variables. Based on a smoothing splines functional model, santaR is able to detect variables highlighting significantly different temporal trajectories between study groups. Designed initially for metabolic phenotyping, santaR is also suited for other Systems Biology disciplines. Command line and graphical analysis (via a shiny application) enable fast and parallel automated analysis and reporting, intuitive visualisation and comprehensive plotting options for non-specialist users.
Offers a comprehensive solution for managing empty states in Shiny applications. It provides tools to create both default and customizable components for scenarios where data is absent or doesn't match user-defined filters. The package prioritizes user experience, ensuring clarity and consistency even when data is not available to display.
Seed vigor is defined as the sum total of those properties of the seed which determine the level of activity and performance of the seed or seed lot during germination and seedling emergence. Testing for vigor becomes more important for carryover seeds, especially if seeds were stored under unknown conditions or under unfavorable storage conditions. Seed vigor testing is also used as indicator of the storage potential of a seed lot and in ranking various seed lots with different qualities. The vigour index is calculated using the equation given by (Ling et al. 2014) <doi:10.1038/srep05859>.
Shapley Value Regression for calculating the relative importance of independent variables in linear regression with avoiding the collinearity.
Suns-Voc (or Isc-Voc) curves can provide the current-voltage (I-V) characteristics of the diode of photovoltaic cells without the effect of series resistance. Here, Suns-Voc curves can be constructed with outdoor time-series I-V curves [1,2,3] of full-size photovoltaic (PV) modules instead of having to be measured in the lab. Time series of four different power loss modes can be calculated based on obtained Isc-Voc curves. This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE0008172. Jennifer L. Braid is supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-SC0014664. [1] Wang, M. et al, 2018. <doi:10.1109/PVSC.2018.8547772>. [2] Walters et al, 2018 <doi:10.1109/PVSC.2018.8548187>. [3] Guo, S. et al, 2016. <doi:10.1117/12.2236939>.
This package provides a set of functions to support experimentation in the utility of partially synthetic data sets. All functions compare an observed data set to one or a set of partially synthetic data sets derived from the observed data to (1) check that data sets have identical attributes, (2) calculate overall and specific variable perturbation rates, (3) check for potential logical inconsistencies, and (4) calculate confidence intervals and standard errors of desired variables in multiple imputed data sets. Confidence interval and standard error formulas have options for either synthetic data sets or multiple imputed data sets. For more information on the formulas and methods used, see Reiter & Raghunathan (2007) <doi:10.1198/016214507000000932>.
This package provides functions for the evaluation of surrogate endpoints when both the surrogate and the true endpoint are failure time variables. The approaches implemented are: (1) the two-step approach (Burzykowski et al, 2001) <DOI:10.1111/1467-9876.00244> with a copula model (Clayton, Plackett, Hougaard) at the first step and either a linear regression of log-hazard ratios at the second step (either adjusted or not for measurement error); (2) mixed proportional hazard models estimated via mixed Poisson GLM (Rotolo et al, 2017 <DOI:10.1177/0962280217718582>).
Implementation of the SIC epsilon-telescope method, either using single or distributional (multiparameter) regression. Includes classical regression with normally distributed errors and robust regression, where the errors are from the Laplace distribution. The "smooth generalized normal distribution" is used, where the estimation of an additional shape parameter allows the user to move smoothly between both types of regression. See O'Neill and Burke (2022) "Robust Distributional Regression with Automatic Variable Selection" for more details. <doi:10.48550/arXiv.2212.07317>. This package also contains the data analyses from O'Neill and Burke (2023). "Variable selection using a smooth information criterion for distributional regression models". <doi:10.1007/s11222-023-10204-8>.