Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An index is created using a mathematical model that transforms multi-dimensional variables into a single value. These variables are often correlated, and while PCA-based indices can address the issue of multicollinearity, they typically do not account for survey weights, which can lead to inaccurate rankings of survey units such as households, districts, or states. To resolve this, the current package facilitates the development of a principal component analysis-based composite index by incorporating survey weights for each sample observation. This ensures the generation of a survey-weighted principal component-based normalized composite index. Additionally, the package provides a normalized principal component-based composite index and ranks the sample observations based on the values of the composite indices. For method details see, Skinner, C. J., Holmes, D. J. and Smith, T. M. F. (1986) <DOI:10.1080/01621459.1986.10478336>, Singh, D., Basak, P., Kumar, R. and Ahmad, T. (2023) <DOI:10.3389/fams.2023.1274530>.
Fitting a smooth path to a given set of noisy spherical data observed at known time points. It implements a piecewise geodesic curve fitting method on the unit sphere based on a velocity-based penalization scheme. The proposed approach is implemented using the Riemannian block coordinate descent algorithm. To understand the method and algorithm, one can refer to Bak, K. Y., Shin, J. K., & Koo, J. Y. (2023) <doi:10.1080/02664763.2022.2054962> for the case of order 1. Additionally, this package includes various functions necessary for handling spherical data.
Efficient procedure for solving the soft maximin problem for large scale heterogeneous data, see Lund, Mogensen and Hansen (2022) <doi:10.1111/sjos.12580>. Currently Lasso and SCAD penalized estimation is implemented. Note this package subsumes and replaces the SMMA package.
The superdiag package provides a comprehensive test suite for testing Markov Chain nonconvergence. It integrates five standard empirical MCMC convergence diagnostics (Gelman-Rubin, Geweke, Heidelberger-Welch, Raftery-Lewis, and Hellinger distance) and plotting functions for trace plots and density histograms. The functions of the package can be used to present all diagnostic statistics and graphs at once for conveniently checking MCMC nonconvergence.
Analysis of species limits and DNA barcoding data. Included are functions for generating important summary statistics from DNA barcode data, assessing specimen identification efficacy, testing and optimizing divergence threshold limits, assessment of diagnostic nucleotides, and calculation of the probability of reciprocal monophyly. Additionally, a sliding window function offers opportunities to analyse information across a gene, often used for marker design in degraded DNA studies. Further information on the package has been published in Brown et al (2012) <doi:10.1111/j.1755-0998.2011.03108.x>.
Dictionary-like reference for computing scoring rules in a wide range of situations. Covers both parametric forecast distributions (such as mixtures of Gaussians) and distributions generated via simulation. Further details can be found in the package vignettes <doi:10.18637/jss.v090.i12>, <doi:10.18637/jss.v110.i08>.
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
Efficient procedures for fitting and cross-validating the structurally-regularized time-dependent Cox models.
Reliability of (normal) stress-strength models and for building two-sided or one-sided confidence intervals according to different approximate procedures.
This package provides a framework for visualizing and exploring results of a Management Strategy Evaluation (MSE). The publication quality figures and tables can be developed directly from the R console, or interactively explored with the Slick App. For more details, see the `Slick` website <https://slick.bluematterscience.com>.
Implementations of the Single Transferable Vote counting system. By default, it uses the Cambridge method for surplus allocation and Droop method for quota calculation. Fractional surplus allocation and the Hare quota are available as options.
This package provides a simple authentification mechanism for single shiny applications. Authentification and password change functionality are performed calling user provided functions that typically access some database backend. Source code of main applications is protected until authentication is successful.
Read SubRip <https://sourceforge.net/projects/subrip/> subtitle files as data frames for easy text analysis or manipulation. Easily shift numeric timings and export subtitles back into valid SubRip timestamp format to sync subtitles and audio.
Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.
Structural handling of identity numbers used in the Swedish administration such as personal identity numbers ('personnummer') and organizational identity numbers ('organisationsnummer').
User-friendly functions which parse output of command line programs used to query Slurm. Morris A. Jette and Tim Wickberg (2023) <doi:10.1007/978-3-031-43943-8_1> describe Slurm in detail.
Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <DOI:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.
This package provides a sensitivity analysis approach for unmeasured confounding in observational data with multiple treatments and a binary outcome. This approach derives the general bias formula and provides adjusted causal effect estimates in response to various assumptions about the degree of unmeasured confounding. Nested multiple imputation is embedded within the Bayesian framework to integrate uncertainty about the sensitivity parameters and sampling variability. Bayesian Additive Regression Model (BART) is used for outcome modeling. The causal estimands are the conditional average treatment effects (CATE) based on the risk difference. For more details, see paper: Hu L et al. (2020) A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data <arXiv:2012.06093>.
Extends the classical SSIM method proposed by Wang', Bovik', Sheikh', and Simoncelli'(2004) <doi:10.1109/TIP.2003.819861>. for irregular lattice-based maps and raster images. The geographical SSIM method incorporates well-developed geographically weighted summary statistics'('Brunsdon', Fotheringham and Charlton 2002) <doi:10.1016/S0198-9715(01)00009-6> with an adaptive bandwidth kernel function for irregular lattice-based maps.
"The Soil Texture Wizard" is a set of R functions designed to produce texture triangles (also called texture plots, texture diagrams, texture ternary plots), classify and transform soil textures data. These functions virtually allows to plot any soil texture triangle (classification) into any triangle geometry (isosceles, right-angled triangles, etc.). This set of function is expected to be useful to people using soil textures data from different soil texture classification or different particle size systems. Many (> 15) texture triangles from all around the world are predefined in the package. A simple text based graphical user interface is provided: soiltexture_gui().
Build custom Europe SpatialPolygonsDataFrame, if you don't know what is a SpatialPolygonsDataFrame see SpatialPolygons() in sp', by example for mapLayout() in antaresViz'. Antares is a powerful software developed by RTE to simulate and study electric power systems (more information about Antares here: <https://antares-simulator.org/>).
Generates data from R or JAGS code for use in simulation studies. The data are returned as an nlist::nlists object and/or saved to file as individual .rds files. Parallelization is implemented using the future package. Progress is reported using the progressr package.
This package creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.
Inferring causation from spatial cross-sectional data through empirical dynamic modeling (EDM), with methodological extensions including geographical convergent cross mapping from Gao et al. (2023) <doi:10.1038/s41467-023-41619-6>, as well as the spatial causality test following the approach of Herrera et al. (2016) <doi:10.1111/pirs.12144>, together with geographical pattern causality proposed in Zhang et al. (2025) <doi:10.1080/13658816.2025.2581207>.