Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
It provides users with a wide range of tools to simulate, estimate, analyze, and visualize the dynamics of stochastic differential systems in both forms Ito and Stratonovich. Statistical analysis with parallel Monte Carlo and moment equations methods of SDEs <doi:10.18637/jss.v096.i02>. Enabled many searchers in different domains to use these equations to modeling practical problems in financial and actuarial modeling and other areas of application, e.g., modeling and simulate of first passage time problem in shallow water using the attractive center (Boukhetala K, 1996) ISBN:1-56252-342-2.
Pass named and unnamed character vectors into specified positions in strings. This represents an attempt to replicate some of python's string formatting.
Introduces the symbolicQspray objects. Such an object represents a multivariate polynomial whose coefficients are fractions of multivariate polynomials with rational coefficients. The package allows arithmetic on such polynomials. It is based on the qspray and ratioOfQsprays packages. Some functions for qspray polynomials have their counterpart for symbolicQspray polynomials. A symbolicQspray polynomial should not be seen as a polynomial on the field of fractions of rational polynomials, but should rather be seen as a polynomial with rational coefficients depending on some parameters, symbolically represented, with a dependence given by fractions of rational polynomials.
The definition of fuzzy random variable and the methods of simulation from fuzzy random variables are two challenging statistical problems in three recent decades. This package is organized based on a special definition of fuzzy random variable and simulate fuzzy random variable by Piecewise Linear Fuzzy Numbers (PLFNs); see Coroianua et al. (2013) <doi:10.1016/j.fss.2013.02.005> for details about PLFNs. Some important statistical functions are considered for obtaining the membership function of main statistics, such as mean, variance, summation, standard deviation and coefficient of variance. Some of applied advantages of Sim.PLFN package are: (1) Easily generating / simulation a random sample of PLFN, (2) drawing the membership functions of the simulated PLFNs or the membership function of the statistical result, and (3) Considering the simulated PLFNs for arithmetic operation or importing into some statistical computation. Finally, it must be mentioned that Sim.PLFN package works on the basis of FuzzyNumbers package.
This package creates 3D animated, interactive visualizations that can be viewed in a web browser.
Bundles functions used to analyze the harmfulness of trial errors in criminal trials. Functions in the Scientific Analysis of Trial Errors ('sate') package help users estimate the probability that a jury will find a defendant guilty given jurors preferences for a guilty verdict and the uncertainty of that estimate. Users can also compare actual and hypothetical trial conditions to conduct harmful error analysis. The conceptual framework is discussed by Barry Edwards, A Scientific Framework for Analyzing the Harmfulness of Trial Errors, UCLA Criminal Justice Law Review (2024) <doi:10.5070/CJ88164341> and Barry Edwards, If The Jury Only Knew: The Effect Of Omitted Mitigation Evidence On The Probability Of A Death Sentence, Virginia Journal of Social Policy & the Law (2025) <https://vasocialpolicy.org/wp-content/uploads/2025/05/Edwards-If-The-Jury-Only-Knew.pdf>. The relationship between individual jurors verdict preferences and the probability that a jury returns a guilty verdict has been studied by Davis (1973) <doi:10.1037/h0033951>; MacCoun & Kerr (1988) <doi:10.1037/0022-3514.54.1.21>, and Devine et el. (2001) <doi:10.1037/1076-8971.7.3.622>, among others.
Test and estimates of location, tests of independence, tests of sphericity and several estimates of shape all based on spatial signs, symmetrized signs, ranks and signed ranks. For details, see Oja and Randles (2004) <doi:10.1214/088342304000000558> and Oja (2010) <doi:10.1007/978-1-4419-0468-3>.
This package provides a set of tools for examining the design and analysis aspects of stepped wedge cluster randomized trials (SW CRT) based on a repeated cross-sectional or cohort sampling scheme (Hussey MA and Hughes JP (2007) Contemporary Clinical Trials 28:182-191).
Reimplementation of the svDialogs dialog boxes in Tcl/Tk.
Estimate average treatment effects (ATEs) in stratified randomized experiments. `sreg` supports a wide range of stratification designs, including matched pairs, n-tuple designs, and larger strata with many units รข possibly of unequal size across strata. sreg is designed to accommodate scenarios with multiple treatments and cluster-level treatment assignments, and accommodates optimal linear covariate adjustment based on baseline observable characteristics. sreg computes estimators and standard errors based on Bugni, Canay, Shaikh (2018) <doi:10.1080/01621459.2017.1375934>; Bugni, Canay, Shaikh, Tabord-Meehan (2024+) <doi:10.48550/arXiv.2204.08356>; Jiang, Linton, Tang, Zhang (2023+) <doi:10.48550/arXiv.2201.13004>; Bai, Jiang, Romano, Shaikh, and Zhang (2024) <doi:10.1016/j.jeconom.2024.105740>; Bai (2022) <doi:10.1257/aer.20201856>; Bai, Romano, and Shaikh (2022) <doi:10.1080/01621459.2021.1883437>; Liu (2024+) <doi:10.48550/arXiv.2301.09016>; and Cytrynbaum (2024) <doi:10.3982/QE2475>.
Projection pursuit is used to find interesting low-dimensional projections of high-dimensional data by optimizing an index over all possible projections. The spinebil package contains methods to evaluate the performance of projection pursuit index functions using tour methods. A paper describing the methods can be found at <doi:10.1007/s00180-020-00954-8>.
An extension of animate.css that allows user to easily add animations to any UI element in shiny app using the elements id.
It is a hybrid spatial model that combines the variable selection capabilities of stepwise regression methods with the predictive power of the Geographically Weighted Regression(GWR) model.The developed hybrid model follows a two-step approach where the stepwise variable selection method is applied first to identify the subset of predictors that have the most significant impact on the response variable, and then a GWR model is fitted using those selected variables for spatial prediction at test or unknown locations. For method details,see Leung, Y., Mei, C. L. and Zhang, W. X. (2000).<DOI:10.1068/a3162>.This hybrid spatial model aims to improve the accuracy and interpretability of GWR predictions by selecting a subset of relevant variables through a stepwise selection process.This approach is particularly useful for modeling spatially varying relationships and improving the accuracy of spatial predictions.
This package contains statistical methods to analyze graphs, such as graph parameter estimation, model selection based on the Graph Information Criterion, statistical tests to discriminate two or more populations of graphs, correlation between graphs, and clustering of graphs. References: Takahashi et al. (2012) <doi:10.1371/journal.pone.0049949>, Fujita et al. (2017) <doi:10.3389/fnins.2017.00066>, Fujita et al. (2017) <doi:10.1016/j.csda.2016.11.016>, Fujita et al. (2019) <doi:10.1093/comnet/cnz028>.
This package provides a rudimentary sequencer to define, manipulate and mix sound samples. The underlying motivation is to sonify data, as demonstrated in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).
This package provides a topological version of k-NN: An abstract model is build as 2-dimensional self-organising map. Samples of unknown class are predicted by mapping them on the SOM and analysing class membership of neurons in the neighbourhood.
Download data from StatsWales into R. Removes the need for the user to write their own loops when parsing data from the StatsWales API. Provides functions for datasets (<http://open.statswales.gov.wales/en-gb/dataset>) and metadata (<http://open.statswales.gov.wales/en-gb/discover/metadata>) endpoints.
Non-proportional hazard (NPH) is commonly observed in immuno-oncology studies, where the survival curves of the treatment and control groups show delayed separation. To properly account for NPH, several statistical methods have been developed. One such method is Max-Combo test, which is a straightforward and flexible hypothesis testing method that can simultaneously test for constant, early, middle, and late treatment effects. However, the majority of the Max-Combo test performed in clinical studies are unstratified, ignoring the important prognostic stratification factors. To fill this gap, we have developed an R package for stratified Max-Combo testing that accounts for stratified baseline factors. Our package explores various methods for calculating combined test statistics, estimating joint distributions, and determining the p-values.
Quantifies clustering quality by measuring both cohesion within clusters and separation between clusters. Implements advanced silhouette width computations for diverse clustering structures, including: simplified silhouette (Van der Laan et al., 2003) <doi:10.1080/0094965031000136012>, Probability of Alternative Cluster normalization methods (Raymaekers & Rousseeuw, 2022) <doi:10.1080/10618600.2022.2050249>, fuzzy clustering and silhouette diagnostics using membership probabilities (Campello & Hruschka, 2006; Menardi, 2011; Bhat & Kiruthika, 2024) <doi:10.1016/j.fss.2006.07.006>, <doi:10.1007/s11222-010-9169-0>, <doi:10.1080/23737484.2024.2408534>, and multi-way clustering extensions such as block and tensor clustering (Schepers et al., 2008; Bhat & Kiruthika, 2025) <doi:10.1007/s00357-008-9005-9>, <doi:10.21203/rs.3.rs-6973596/v1>. Provides tools for computation and visualization (Rousseeuw, 1987) <doi:10.1016/0377-0427(87)90125-7> to support robust and reproducible cluster diagnostics across standard, soft, and multi-way clustering settings.
This package provides methods to integrate functions over m-dimensional simplices in n-dimensional Euclidean space. There are exact methods for polynomials and adaptive methods for integrating an arbitrary function.
This package provides a scrolling chat interface with multiline input, suitable for creating chatbot apps based on Large Language Models (LLMs). Designed to work particularly well with the ellmer R package for calling LLMs.
This package implements the methodological developments found in Hermes (2025) <doi:10.48550/arXiv.2503.02786>, and allows for the statistical modeling of data consisting of multiple users that provide an ordinal rating for one or multiple items.
This package implements the diffusion map method of dimensionality reduction and spectral method of combining multiple diffusion maps, including creation of the spectra and visualization of maps.