Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Makes the React library Chakra UI usable in Shiny apps. Chakra UI components include alert dialogs, drawers (sliding panels), menus, modals, popovers, sliders, and more.
It contains soft clustering algorithms, in particular approaches derived from rough set theory: Lingras & West original rough k-means, Peters refined rough k-means, and PI rough k-means. It also contains classic k-means and a corresponding illustrative demo.
This package performs parametric synthesis of sounds with harmonic and noise components such as animal vocalizations or human voice. Also offers tools for audio manipulation and acoustic analysis, including pitch tracking, spectral analysis, audio segmentation, pitch and formant shifting, etc. Includes four interactive web apps for synthesizing and annotating audio, manually correcting pitch contours, and measuring formant frequencies. Reference: Anikin (2019) <doi:10.3758/s13428-018-1095-7>.
Detects spatial and temporal groups in GPS relocations (Robitaille et al. (2019) <doi:10.1111/2041-210X.13215>). It can be used to convert GPS relocations to gambit-of-the-group format to build proximity-based social networks In addition, the randomizations function provides data-stream randomization methods suitable for GPS data.
Remove batch effects by projecting query batches into the reference batch space.
Troubleshooting reactive data in shiny can be difficult. These functions will convert reactive data frames into functions and load all assigned objects into your local environment. If you create a dummy input object, as the function will suggest, you will be able to test your server and ui functions interactively.
Data sets and functions to support the books "Statistics: Data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-book/> and "An R companion to Statistics: data analysis and modelling" by Speekenbrink, M. (2021) <https://mspeekenbrink.github.io/sdam-r-companion/>. All datasets analysed in these books are provided in this package. In addition, the package provides functions to compute sample statistics (variance, standard deviation, mode), create raincloud and enhanced Q-Q plots, and expand Anova results into omnibus tests and tests of individual contrasts.
This package provides a time series causal inference model for Randomized Controlled Trial (RCT) under spillover effect. SPORTSCausal (Spillover Time Series Causal Inference) separates treatment effect and spillover effect from given responses of experiment group and control group by predicting the response without treatment. It reports both effects by fitting the Bayesian Structural Time Series (BSTS) model based on CausalImpact', as described in Brodersen et al. (2015) <doi:10.1214/14-AOAS788>.
The implementation of SHAPBoost, a boosting-based feature selection technique that ranks features iteratively based on Shapley values.
Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework (Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010). MOA: Massive Online Analysis, Journal of Machine Learning Research 11: 1601-1604).
Is designed to interactively and reproducibly visualize and filter SNP (single-nucleotide polymorphism) datasets. This R-based implementation of SNP and genotype filters facilitates an interactive and iterative SNP filtering pipeline, which can be documented reproducibly via rmarkdown'. SNPfiltR contains functions for visualizing various quality and missing data metrics for a SNP dataset, and then filtering the dataset based on user specified cutoffs. All functions take vcfR objects as input, which can easily be generated by reading standard vcf (variant call format) files into R using the R package vcfR authored by Knaus and Grünwald (2017) <doi:10.1111/1755-0998.12549>. Each SNPfiltR function can return a newly filtered vcfR object, which can then be written to a local directory in standard vcf format using the vcfR package, for downstream population genetic and phylogenetic analyses.
User tools for working with The STOICH (Stoichiometric Traits of Organisms in their Chemical Habitats) Project database <https://snr-stoich.unl.edu/>. This package is designed to aid in data discovery, filtering, pairing water samples with organism samples, and merging data tables to assist users in preparing data for analyses. For additional examples see "Additional Examples" and the readme file at <https://github.com/STOICH-project/STOICH-utilities>.
The SoundexBR package provides an algorithm for decoding names into phonetic codes, as pronounced in Portuguese. The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling. The algorithm mainly encodes consonants; a vowel will not be encoded unless it is the first letter. The soundex code resultant consists of a four digits long string composed by one letter followed by three numerical digits: the letter is the first letter of the name, and the digits encode the remaining consonants.
Slack <https://slack.com/> provides a service for teams to collaborate by sharing messages, images, links, files and more. Functions are provided that make it possible to interact with the Slack platform API'. When you need to share information or data from R, rather than resort to copy/ paste in e-mails or other services like Skype <https://www.skype.com/en/>, you can use this package to send well-formatted output from multiple R objects and expressions to all teammates at the same time with little effort. You can also send images from the current graphics device, R objects, and upload files.
This data package contains four datasets of quantitative PCR (qPCR) amplification curves that were used as supplementary data in the research article by Sisti et al. (2010), <doi:10.1186/1471-2105-11-186>. The primary dataset comprises a ten-fold dilution series spanning copy numbers from 3.14 Ã 10^7 to 3.14 Ã 10^2, with twelve replicates per concentration. These samples are based on a pGEM-T Promega plasmid containing a 104 bp fragment of the mitochondrial gene NADH dehydrogenase 1 (MT-ND1), amplified using the ND1/ND2 primer pair. The remaining three datasets contain qPCR results in the presence of specific PCR inhibitors: tannic acid, immunoglobulin G (IgG), and quercetin, respectively, to assess their effects on the amplification process. These datasets are useful for researchers interested in PCR kinetics. The original raw data file is available as Additional File 1: <https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-11-186/MediaObjects/12859_2009_3643_MOESM1_ESM.XLS>.
An English language syllable counter, plus readability score measure-er. For readability, we support Flesch Reading Ease and Flesch-Kincaid Grade Level ('Kincaid et al'. 1975) <https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1055&context=istlibrary>, Automated Readability Index ('Senter and Smith 1967) <https://apps.dtic.mil/sti/citations/AD0667273>, Simple Measure of Gobbledygook (McLaughlin 1969), and Coleman-Liau (Coleman and Liau 1975) <doi:10.1037/h0076540>. The package has been carefully optimized and should be very efficient, both in terms of run time performance and memory consumption. The main methods are vectorized by document, and scores for multiple documents are computed in parallel via OpenMP'.
Computes the optimal sample size for various 2-group designs (e.g., when comparing the means of two groups assuming equal variances, unequal variances, or comparing proportions) when the aim is to maximize the rewards over the full decision procedure of a) running a trial (with the computed sample size), and b) subsequently administering the winning treatment to the remaining N-n units in the population. Sample sizes and expected rewards for standard t- and z- tests are also provided.
This package provides a robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
Sensitivity to unmeasured biases in an observational study that is a full match. Function senfm() performs tests and function senfmCI() creates confidence intervals. The method uses Huber's M-statistics, including least squares, and is described in Rosenbaum (2007, Biometrics) <DOI:10.1111/j.1541-0420.2006.00717.x>.
Format a number (or a list of numbers) to a string (or a list of strings) with SI prefix. Use SI prefixes as constants like (4 * milli)^2.
Sometimes it is useful to serve up alternative shiny UIs depending on information passed in the request object, such as the value of a cookie or a query parameter. This packages facilitates such switches.
This package provides methods for spatial and spatio-temporal smoothing of demographic and health indicators using survey data, with particular focus on estimating and projecting under-five mortality rates, described in Mercer et al. (2015) <doi:10.1214/15-AOAS872>, Li et al. (2019) <doi:10.1371/journal.pone.0210645>, Wu et al. (DHS Spatial Analysis Reports No. 21, 2021), and Li et al. (2023) <doi:10.48550/arXiv.2007.05117>.
This package implements the SparseStep model for solving regression problems with a sparsity constraint on the parameters. The SparseStep regression model was proposed in Van den Burg, Groenen, and Alfons (2017) <arXiv:1701.06967>. In the model, a regularization term is added to the regression problem which approximates the counting norm of the parameters. By iteratively improving the approximation a sparse solution to the regression problem can be obtained. In this package both the standard SparseStep algorithm is implemented as well as a path algorithm which uses golden section search to determine solutions with different values for the regularization parameter.
This package provides functions to create and manage research compendiums for data analysis. Research compendiums are a standard and intuitive folder structure for organizing the digital materials of a research project, which can significantly improve reproducibility. The package offers several compendium structure options that fit different research project as well as the ability of duplicating the folder structure of existing projects or implementing custom structures. It also simplifies the use of version control.