Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a rich set of UI components for building Shiny applications, including inputs, containers, overlays, menus, and various utilities. All components from Fluent UI (the underlying JavaScript library) are available and have usage examples in R.
Settings and functions to extend the knitr Stata engine.
This package provides functions for spatial methods based on generalized estimating equations (GEE) and wavelet-revised methods (WRM), functions for scaling by wavelet multiresolution regression (WMRR), conducting multi-model inference, and stepwise model selection. Further, contains functions for spatially corrected model accuracy measures.
RStudio addin which provides a GUI to visualize and analyse networks. After finishing a session, the code to produce the plot is inserted in the current script. Alternatively, the function SNAhelperGadget() can be used directly from the console. Additional addins include the Netreader() for reading network files, Netbuilder() to create small networks via point and click, and the Componentlayouter() to layout networks with many components manually.
This is an all-encompassing suite to facilitate the simulation of so-called quantities of interest by way of a multivariate normal distribution of the regression model's coefficients and variance-covariance matrix.
This package provides inference based on the survey package for the wide range of parametric models in the VGAM package.
This algorithm conducts variable selection in the classification setting. It repeatedly subsamples variables and runs linear discriminant analysis (LDA) on the subsampled variables. Variables are scored based on the AUC and the t-statistics. Variables then enter a competition and the semi-finalist variables will be evaluated in a final round of LDA classification. The algorithm then outputs a list of variable selected. Qiao, Sun and Fan (2017) <http://people.math.binghamton.edu/qiao/swa.html>.
This package provides a user-friendly framework for estimating a wide variety of cross-sectional and panel stochastic frontier models. Suitable for a broad range of applications, the implementation offers extensive flexibility in specification and estimation techniques.
This package provides a wrapper for Blizzard's Starcraft II (a 2010 real-time strategy game) Application Programming Interface (API). All documented API calls are implemented in an easy-to-use and consistent manner.
Assigns a score projection from 0 to 1 between a given in vivo stage and each single cluster from an in vitro dataset. The score is assigned based on the the fraction of specific markers of the in vivo stage that are conserved in the in vitro clusters <https://github.com/ScialdoneLab>.
Generate and translate standard Universally Unique Identifiers (UUIDs) into shorter - or just different - formats and back. Also implements base58 encoders and decoders.
This package provides a spectral framework to map quantitative trait loci (QTLs) affecting joint differential networks of gene co-Expression. Test the equivalence among multiple biological networks via spectral statistics. See reference Hu, J., Weber, J. N., Fuess, L. E., Steinel, N. C., Bolnick, D. I., & Wang, M. (2025) <doi:10.1371/journal.pcbi.1012953>.
The developed function generates soil salinity indices using satellite data, utilizing multiple spectral bands such as Blue, Green, Red, Near-Infrared (NIR), and Shortwave Infrared (SWIR1, SWIR2). It computes 24 different salinity indices crucial for monitoring and analyzing salt-affected soils efficiently. For more details see, Rani, et al. (2022). <DOI: 10.1007/s12517-022-09682-3>. One of the key features of the developed function is its flexibility. Users can provide any combination of the required spectral bands, and the function will automatically calculate only the relevant indices based on the available data. This dynamic capability ensures that users can maximize the utility of their data without the need for all spectral bands, making the package versatile and user-friendly. Outputs are provided as GeoTIFF file format, facilitating easy integration with GIS workflows.
Cellular population mapping (CPM) a deconvolution algorithm in which single-cell genomics is required in only one or a few samples, where in other samples of the same tissue, only bulk genomics is measured and the underlying fine resolution cellular heterogeneity is inferred.
By binding R functions and the Highcharts <http://www.highcharts.com/> charting library, sankeywheel package provides a simple way to draw dependency wheels and sankey diagrams.
This package provides a general spatiotemporal satellite image imputation method based on sparse functional data analytic techniques. The imputation method applies and extends the Functional Principal Analysis by Conditional Estimation (PACE). The underlying idea for the proposed procedure is to impute a missing pixel by borrowing information from temporally and spatially contiguous pixels based on the best linear unbiased prediction.
Set of functions for Stochastic Data Envelopment Analysis. Chance constrained versions of radial, directional and additive DEA models are implemented, as long as super-efficiency models. See: Cooper, W.W.; Deng, H.; Huang, Z.; Li, S.X. (2002). <doi:10.1057/palgrave.jors.2601433>, Bolós, V.J.; Benà tez, R.; Coll-Serrano, V. (2024) <doi:10.1016/j.orp.2024.100307>.
Extends the SelectBoost approach to Generalized Additive Models for Location, Scale and Shape (GAMLSS). Implements bootstrap stability-selection across parameter-specific formulas (mu, sigma, nu, tau) via gamlss::stepGAIC(). Includes optional standardization of predictors and helper functions for corrected AIC calculation. More details can be found in Bertrand and Maumy (2024) <https://hal.science/hal-05352041> that highlights correlation-aware resampling to improve variable selection for GAMLSS and quantile regression when predictors are numerous and highly correlated.
Sejong(http://www.sejong.or.kr/) corpus and Hannanum(http://semanticweb.kaist.ac.kr/home/index.php/HanNanum) dictionaries for KoNLP.
Algorithms for the implementation and evaluation of Monte Carlo tests, as well as for their use in multiple testing procedures.
It provides the density and random number generator for the Scale-Shape Mixtures of Skew-Normal Distributions proposed by Jamalizadeh and Lin (2016) <doi:10.1007/s00180-016-0691-1>.
This package provides functions for evaluating the stability of low-dimensional embeddings and cluster assignments in singleâ cell RNA sequencing (scRNAâ seq) datasets. Starting from a principal component analysis (PCA) object, users can generate multiple replicates of tâ Distributed Stochastic Neighbor Embedding (tâ SNE) or Uniform Manifold Approximation and Projection (UMAP) embeddings. Embedding stability is quantified by computing pairwise Kendallâ s Tau correlations across replicates and summarizing the distribution of correlation coefficients. In addition to dimensionality reduction, scStability assesses clustering consistency using either Louvain or Leiden algorithms and calculating the Normalized Mutual Information (NMI) between all pairs of cluster assignments. For background on UMAP and t-SNE algorithms, see McInnes et al. (2020, <doi:10.21105/joss.00861>) and van der Maaten & Hinton (2008, <https://github.com/lvdmaaten/bhtsne>), respectively.
In practice, it is difficult to determine the number of decomposition modes, K, for Variational Mode Decomposition (VMD). To overcome this issue, this study offers Spearman Variational Mode Decomposition (SVMD), a method that uses the Spearman correlation coefficient to calculate the ideal mode number. Unlike the Pearson correlation coefficient, which only returns a perfect value when X and Y are linearly connected, the Spearman correlation can be calculated without knowing the probability distributions of X and Y. The Spearman correlation coefficient, also called Spearman's rank correlation coefficient, is a subset of a wider correlation coefficient. As VMD decomposes a signal, the Spearman correlation coefficient between the reconstructed and original sequences rises as the mode number K increases. Once the signal has been fully decomposed, subsequent increases in K cause the correlation to gradually level off. When the correlation reaches a specific level, VMD is said to have adequately decomposed the signal. Numerous experiments revealed that a threshold of 0.997 produces the best denoising effect, so the threshold is set at 0.997. This package has been developed using concept of Yang et al. (2021)<doi:10.1016/j.aej.2021.01.055>.
Introduces a fast and efficient Surrogate Variable Analysis algorithm that captures variation of unknown sources (batch effects) for high-dimensional data sets. The algorithm is built on the irwsva.build function of the sva package and proposes a revision on it that achieves an order of magnitude faster running time while trading no accuracy loss in return.