Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a semi-supervised learning framework for finite mixture models under a mixed-missingness mechanism. The approach models both missing completely at random (MCAR) and entropy-based missing at random (MAR) processes using a logisticâ entropy formulation. Estimation is carried out via an Expectationâ -Conditional Maximisation (ECM) algorithm with robust initialisation routines for stable convergence. The methodology relates to the statistical perspective and informative missingness behaviour discussed in Ahfock and McLachlan (2020) <doi:10.1007/s11222-020-09971-5> and Ahfock and McLachlan (2023) <doi:10.1016/j.ecosta.2022.03.007>. The package provides functions for data simulation, model estimation, prediction, and theoretical Bayes error evaluation for analysing partially labelled data under a mixed-missingness mechanism.
This package provides methods and data for cluster detection and disease mapping.
Formulates a sparse distance weighted discrimination (SDWD) for high-dimensional classification and implements a very fast algorithm for computing its solution path with the L1, the elastic-net, and the adaptive elastic-net penalties. More details about the methodology SDWD is seen on Wang and Zou (2016) (<doi:10.1080/10618600.2015.1049700>).
Parameter inference methods for models defined implicitly using a random simulator. Inference is carried out using simulation-based estimates of the log-likelihood of the data. The inference methods implemented in this package are explained in Park, J. (2025) <doi:10.48550/arxiv.2311.09446>. These methods are built on a simulation metamodel which assumes that the estimates of the log-likelihood are approximately normally distributed with the mean function that is locally quadratic around its maximum. Parameter estimation and uncertainty quantification can be carried out using the ht() function (for hypothesis testing) and the ci() function (for constructing a confidence interval for one-dimensional parameters).
Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (GÃ E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear GÃ E interactions simultaneously (Ren et al. (2020) <doi:10.1002/sim.8434>). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.
This package provides tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores.
Construct various types of space-filling designs, including Latin hypercube designs, clustering-based designs, maximin designs, maximum projection designs, and uniform designs (Joseph 2016 <doi:10.1080/08982112.2015.1100447>). It also offers the option to optimize designs based on user-defined criteria. This work is supported by U.S. National Science Foundation grant DMS-2310637.
Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the seasonalview package. Uses the X-13-binaries from the x13binary package.
Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.
Capture screenshots in Shiny applications. Screenshots can either be of the entire viewable page, or a specific section of the page. The captured image is automatically downloaded as a PNG image, or it can also be saved on the server. Powered by the html2canvas JavaScript library.
This package provides data about the Star Wars movie franchise in a set of relational tables or as a complete DuckDB database. All data was collected from the open source Star Wars API.
Insert Glide JavaScript component into Shiny applications for carousel or assistant-like user interfaces.
Simplifies the process of generating samples from a variety of probability distributions, allowing users to quickly create data frames for demonstrations, troubleshooting, or teaching purposes. Data is available in multiple sizesâ small, medium, and large. For more information, refer to the package documentation.
Plots survival models from the survival package. Additionally, it plots curves of multistate models from the mstate package. Typically, a plot is drawn by the sequence survplot(), confIntArea(), survCurve() and nrAtRisk(). The separation of the plot in this 4 functions allows for great flexibility to make a custom plot for publication.
This package performs sensitivity analysis for Structural Equation Modeling (SEM). It determines which sample points need to be removed for the sign of a specific path in the SEM model to change, thus assessing the robustness of the model. Methodological manuscript in preparation.
Survival analysis models are commonly used in medicine and other areas. Many of them are too complex to be interpreted by human. Exploration and explanation is needed, but standard methods do not give a broad enough picture. survex provides easy-to-apply methods for explaining survival models, both complex black-boxes and simpler statistical models. They include methods specific to survival analysis such as SurvSHAP(t) introduced in Krzyzinski et al., (2023) <doi:10.1016/j.knosys.2022.110234>, SurvLIME described in Kovalev et al., (2020) <doi:10.1016/j.knosys.2020.106164> as well as extensions of existing ones described in Biecek et al., (2021) <doi:10.1201/9780429027192>.
The SC-SR Algorithm is used to calculate fully non-parametric and self-consistent estimators of the cause-specific failure probabilities in the presence of interval-censoring and possible making of the failure cause in a competing risks environment. In the version 2.0 the function creating the probability matrix from double-censored data is added.
Include interactive sparkline charts <http://omnipotent.net/jquery.sparkline> in all R contexts with the convenience of htmlwidgets'.
Statistical analysis of spatio-temporal point processes on linear networks. This packages provides tools to visualise and analyse spatio-temporal point patterns on linear networks using first, second, and higher-order summary statistics.
An introduction to a couple of novel predictive variable selection methods for generalised boosted regression modeling (gbm). They are based on various variable influence methods (i.e., relative variable influence (RVI) and knowledge informed RVI (i.e., KIRVI, and KIRVI2)) that adopted similar ideas as AVI, KIAVI and KIAVI2 in the steprf package, and also based on predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) <doi:10.3390/geosciences9040180>. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017). <DOI: 10.13140/RG.2.2.27686.22085>.
This package provides a non convex optimization package that optimizes any function under the criterion, combination of variables are on the surface of a unit sphere, as described in the paper : Das et al. (2019) <arXiv:1909.04024> .
This package provides confidence intervals in least-squares regressions when the variable of interest has a shift-share structure, and in instrumental variables regressions when the instrument has a shift-share structure. The confidence intervals implement the AKM and AKM0 methods developed in Adão, Kolesár, and Morales (2019) <doi:10.1093/qje/qjz025>.
This package provides wrappers for scclust', a C library for computationally efficient size-constrained clustering with near-optimal performance. See <https://github.com/fsavje/scclust> for more information.
An user-friendly framework to preprocess raw item scores of questionnaires into factors or scores and standardize them. Standardization can be made either by their normalization in representative sample, or by import of premade scoring table.