_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-survrm2perm 0.1.0
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=survRM2perm
Licenses: GPL 2
Synopsis: Permutation Test for Comparing Restricted Mean Survival Time
Description:

This package performs the permutation test using difference in the restricted mean survival time (RMST) between groups as a summary measure of the survival time distribution. When the sample size is less than 50 per group, it has been shown that there is non-negligible inflation of the type I error rate in the commonly used asymptotic test for the RMST comparison. Generally, permutation tests can be useful in such a situation. However, when we apply the permutation test for the RMST comparison, particularly in small sample situations, there are some cases where the survival function in either group cannot be defined due to censoring in the permutation process. Horiguchi and Uno (2020) <doi:10.1002/sim.8565> have examined six workable solutions to handle this numerical issue. It performs permutation tests with implementation of the six methods outlined in the paper when the numerical issue arises during the permutation process. The result of the asymptotic test is also provided for a reference.

r-slidingwindows 0.2.0
Propagated dependencies: r-tsentropies@0.9 r-performanceanalytics@2.0.8 r-nonlineartseries@0.3.1 r-dcca@0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/efguedes/SlidingWindows
Licenses: GPL 3
Synopsis: Methods for Time Series Analysis
Description:

This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA exponent), GUEDES et al. (2019) <doi:10.1016/j.physa.2019.04.132> , Detrended cross-correlation coefficient (RHODCCA), GUEDES & ZEBENDE (2019) <doi:10.1016/j.physa.2019.121286>, DMCA cross-correlation coefficient and Detrended multiple cross-correlation coefficient (DMC), GUEDES & SILVA-FILHO & ZEBENDE (2018) <doi:10.1016/j.physa.2021.125990>, both with sliding windows approach.

r-simtrial 1.0.2
Propagated dependencies: r-survival@3.8-3 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-future@1.68.0 r-foreach@1.5.2 r-dofuture@1.1.2 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://merck.github.io/simtrial/
Licenses: GPL 3
Synopsis: Clinical Trial Simulation
Description:

This package provides some basic routines for simulating a clinical trial. The primary intent is to provide some tools to generate trial simulations for trials with time to event outcomes. Piecewise exponential failure rates and piecewise constant enrollment rates are the underlying mechanism used to simulate a broad range of scenarios such as those presented in Lin et al. (2020) <doi:10.1080/19466315.2019.1697738>. However, the basic generation of data is done using pipes to allow maximum flexibility for users to meet different needs.

r-shinytester 0.1.0
Propagated dependencies: r-visnetwork@2.1.4 r-tidyr@1.3.1 r-stringr@1.6.0 r-readr@2.1.6 r-purrr@1.2.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=ShinyTester
Licenses: GPL 2
Synopsis: Functions to Minimize Bonehead Moves While Working with 'shiny'
Description:

It's my experience that working with shiny is intuitive once you're into it, but can be quite daunting at first. Several common mistakes are fairly predictable, and therefore we can control for these. The functions in this package help match up the assets listed in the UI and the SERVER files, and Visualize the ad hoc structure of the shiny App.

r-shinysbm 0.1.5
Propagated dependencies: r-visnetwork@2.1.4 r-stringr@1.6.0 r-shinydashboard@0.7.3 r-shinyalert@3.1.0 r-shiny@1.11.1 r-sbm@0.4.7 r-rmarkdown@2.30 r-purrr@1.2.0 r-patchwork@1.3.2 r-magrittr@2.0.4 r-golem@0.5.1 r-ggplot2@4.0.1 r-fresh@0.2.2 r-flextable@0.9.10 r-dt@0.34.0 r-dplyr@1.1.4 r-data-table@1.17.8 r-config@0.3.2 r-colourpicker@1.3.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shinySbm
Licenses: Expat
Synopsis: 'shiny' Application to Use the Stochastic Block Model
Description:

This package provides a shiny interface for a simpler use of the sbm R package. It also contains useful functions to easily explore the sbm package results. With this package you should be able to use the stochastic block model without any knowledge in R, get automatic reports and nice visuals, as well as learning the basic functions of sbm'.

r-streammetabolism 1.1.3
Propagated dependencies: r-zoo@1.8-14 r-suntools@1.1.0 r-chron@2.3-62
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ssefick/StreamMetabolism
Licenses: GPL 3+
Synopsis: Calculate Single Station Metabolism from Diurnal Oxygen Curves
Description:

I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves.

r-spdgp 0.1.0
Propagated dependencies: r-vctrs@0.6.5 r-spdep@1.4-1 r-spatialreg@1.4-2 r-smoothmest@0.1-3 r-sf@1.0-23 r-rlang@1.1.6 r-matrix@1.7-4 r-mass@7.3-65 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://josiahparry.github.io/spdgp/
Licenses: Expat
Synopsis: Simulate Spatial Data Generation Processes
Description:

This package provides functionality for simulating data generation processes across various spatial regression models, conceptually aligned with the dgp module of the Python library spreg <https://pysal.org/spreg/api.html#dgp>.

r-singlercapture 0.2.3
Propagated dependencies: r-sandwich@3.1-1 r-mathjaxr@1.8-0 r-lamw@2.2.5 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ncn-foreigners/singleRcapture
Licenses: Expat
Synopsis: Single-Source Capture-Recapture Models
Description:

Implementation of single-source capture-recapture methods for population size estimation using zero-truncated, zero-one truncated and zero-truncated one-inflated Poisson, Geometric and Negative Binomial regression as well as Zelterman's and Chao's regression. Package includes point and interval estimators for the population size with variances estimated using analytical or bootstrap method. Details can be found in: van der Heijden et all. (2003) <doi:10.1191/1471082X03st057oa>, Böhning and van der Heijden (2019) <doi:10.1214/18-AOAS1232>, Böhning et al. (2020) Capture-Recapture Methods for the Social and Medical Sciences or Böhning and Friedl (2021) <doi:10.1007/s10260-021-00556-8>.

r-seacarb 3.3.3
Propagated dependencies: r-solvesaphe@2.1.0 r-oce@1.8-3 r-gsw@1.2-0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://CRAN.R-project.org/package=seacarb
Licenses: GPL 2+
Synopsis: Seawater Carbonate Chemistry
Description:

Calculates parameters of the seawater carbonate system and assists the design of ocean acidification perturbation experiments.

r-saemix 3.4
Propagated dependencies: r-scales@1.4.0 r-rlang@1.1.6 r-npde@3.5 r-mclust@6.1.2 r-mass@7.3-65 r-gridextra@2.3 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=saemix
Licenses: GPL 2+
Synopsis: Stochastic Approximation Expectation Maximization (SAEM) Algorithm
Description:

The saemix package implements the Stochastic Approximation EM algorithm for parameter estimation in (non)linear mixed effects models. It (i) computes the maximum likelihood estimator of the population parameters, without any approximation of the model (linearisation, quadrature approximation,...), using the Stochastic Approximation Expectation Maximization (SAEM) algorithm, (ii) provides standard errors for the maximum likelihood estimator (iii) estimates the conditional modes, the conditional means and the conditional standard deviations of the individual parameters, using the Hastings-Metropolis algorithm (see Comets et al. (2017) <doi:10.18637/jss.v080.i03>). Many applications of SAEM in agronomy, animal breeding and PKPD analysis have been published by members of the Monolix group. The full PDF documentation for the package including references about the algorithm and examples can be downloaded on the github of the IAME research institute for saemix': <https://github.com/iame-researchCenter/saemix/blob/7638e1b09ccb01cdff173068e01c266e906f76eb/docsaem.pdf>.

r-scimo 0.0.3
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-recipes@1.3.1 r-magrittr@2.0.4 r-generics@0.1.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/abichat/scimo
Licenses: GPL 3+
Synopsis: Extra Recipes Steps for Dealing with Omics Data
Description:

Omics data (e.g. transcriptomics, proteomics, metagenomics...) offer a detailed and multi-dimensional perspective on the molecular components and interactions within complex biological (eco)systems. Analyzing these data requires adapted procedures, which are implemented as steps according to the recipes package.

r-ssrmst 0.1.1
Propagated dependencies: r-survrm2@1.0-4 r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SSRMST
Licenses: GPL 2
Synopsis: Sample Size Calculation using Restricted Mean Survival Time
Description:

Calculates the power and sample size based on the difference in Restricted Mean Survival Time.

r-spartaas 1.2.4
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-shinywidgets@0.9.0 r-shinythemes@1.2.0 r-shinyjs@2.1.0 r-shinyjqui@0.4.1 r-shinydashboard@0.7.3 r-shinycssloaders@1.1.0 r-shiny@1.11.1 r-scatterd3@1.0.1 r-scales@1.4.0 r-rstudioapi@0.17.1 r-plotly@4.11.0 r-nor1mix@1.3-3 r-mass@7.3-65 r-lmtest@0.9-40 r-leaflet@2.2.3 r-ks@1.15.1 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1 r-ggplot2@4.0.1 r-ggdendro@0.2.0 r-fpc@2.2-13 r-foreign@0.8-90 r-fastcluster@1.3.0 r-factominer@2.12 r-explor@0.3.10 r-dplyr@1.1.4 r-colorspace@2.1-2 r-cluster@2.1.8.1 r-ape@5.8-1 r-ade4@1.7-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://spartaas.gitpages.huma-num.fr/r-package/
Licenses: GPL 2+
Synopsis: Statistical Pattern Recognition and daTing using Archaeological Artefacts assemblageS
Description:

Statistical pattern recognition and dating using archaeological artefacts assemblages. Package of statistical tools for archaeology. hclustcompro()/perioclust(): Bellanger Lise, Coulon Arthur, Husi Philippe (2021, ISBN:978-3-030-60103-4). mapclust(): Bellanger Lise, Coulon Arthur, Husi Philippe (2021) <doi:10.1016/j.jas.2021.105431>. seriograph(): Desachy Bruno (2004) <doi:10.3406/pica.2004.2396>. cerardat(): Bellanger Lise, Husi Philippe (2012) <doi:10.1016/j.jas.2011.06.031>.

r-sparselrmatrix 0.1.0
Propagated dependencies: r-rspectra@0.16-2 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://rohelab.github.io/sparseLRMatrix/
Licenses: Expat
Synopsis: Represent and Use Sparse + Low Rank Matrices
Description:

This package provides an S4 class for representing and interacting with sparse plus rank matrices. At the moment the implementation is quite spare, but the plan is eventually subclass Matrix objects.

r-sarima 0.9.5
Propagated dependencies: r-rdpack@2.6.4 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-polynomf@2.0-8 r-numderiv@2016.8-1.1 r-ltsa@1.4.6.1 r-lagged@0.3.2 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://geobosh.github.io/sarima/https://github.com/GeoBosh/sarima
Licenses: GPL 2+
Synopsis: Simulation and Prediction with Seasonal ARIMA Models
Description:

Functions, classes and methods for time series modelling with ARIMA and related models. The aim of the package is to provide consistent interface for the user. For example, a single function autocorrelations() computes various kinds of theoretical and sample autocorrelations. This is work in progress, see the documentation and vignettes for the current functionality. Function sarima() fits extended multiplicative seasonal ARIMA models with trends, exogenous variables and arbitrary roots on the unit circle, which can be fixed or estimated (for the algebraic basis for this see <doi:10.48550/arXiv.2208.05055>, a paper on the methodology is being prepared).

r-sensiat 0.3.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-survival@3.8-3 r-rlang@1.1.6 r-rcpp@1.1.0 r-purrr@1.2.0 r-pracma@2.4.6 r-orthogonalsplinebasis@0.1.7 r-mave@1.3.12 r-mass@7.3-65 r-kernsmooth@2.23-26 r-glue@1.8.0 r-ggplot2@4.0.1 r-generics@0.1.4 r-dplyr@1.1.4 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/UofUEpiBio/SensIAT
Licenses: Expat
Synopsis: Sensitivity Analysis for Irregular Assessment Times
Description:

Sensitivity analysis for trials with irregular and informative assessment times, based on a new influence function-based, augmented inverse intensity-weighted estimator.

r-sectorgap 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-tidyr@1.3.1 r-tempdisagg@1.2.0 r-mcmcpack@1.7-1 r-kfas@1.6.0 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sectorgap
Licenses: GPL 3
Synopsis: Consistent Economic Trend Cycle Decomposition
Description:

Determining potential output and the output gap - two inherently unobservable variables - is a major challenge for macroeconomists. sectorgap features a flexible modeling and estimation framework for a multivariate Bayesian state space model identifying economic output fluctuations consistent with subsectors of the economy. The proposed model is able to capture various correlations between output and a set of aggregate as well as subsector indicators. Estimation of the latent states and parameters is achieved using a simple Gibbs sampling procedure and various plotting options facilitate the assessment of the results. For details on the methodology and an illustrative example, see Streicher (2024) <https://www.research-collection.ethz.ch/handle/20.500.11850/653682>.

r-simfam 1.1.6
Propagated dependencies: r-tibble@3.3.0 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/OchoaLab/simfam
Licenses: GPL 3+
Synopsis: Simulate and Model Family Pedigrees with Structured Founders
Description:

The focus is on simulating and modeling families with founders drawn from a structured population (for example, with different ancestries or other potentially non-family relatedness), in contrast to traditional pedigree analysis that treats all founders as equally unrelated. Main function simulates a random pedigree for many generations, avoiding close relatives, pairing closest individuals according to a 1D geography and their randomly-drawn sex, and with variable children sizes to result in a target population size per generation. Auxiliary functions calculate kinship matrices, admixture matrices, and draw random genotypes across arbitrary pedigree structures starting from the corresponding founder values. The code is built around the plink FAM table format for pedigrees. Described in Yao and Ochoa (2022) <doi:10.1101/2022.03.25.485885>.

r-sitreee 0.0-9
Propagated dependencies: r-sitree@0.1-15 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sitreeE
Licenses: GPL 2+
Synopsis: Sitree Extensions
Description:

This package provides extensions for package sitree for allometric variables, growth, mortality, recruitment, management, tree removal and external modifiers functions.

r-stacomirtools 0.6.0.1
Propagated dependencies: r-xtable@1.8-4 r-rpostgres@1.4.8 r-rodbc@1.3-26.1 r-pool@1.0.4 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stacomirtools
Licenses: GPL 2+
Synopsis: Connection Class for Package stacomiR
Description:

S4 class wrappers for the ODBC and Pool DBI connection, also provides some utilities to paste small datasets to clipboard, rename columns. It is used by the package stacomiR for connections to the database. Development versions of stacomiR are available in R-forge.

r-svyvarsel 1.0.1
Propagated dependencies: r-survey@4.4-8 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=svyVarSel
Licenses: GPL 3+
Synopsis: Variable Selection for Complex Survey Data
Description:

Fit design-based linear and logistic elastic nets with complex survey data considering the sampling design when defining training and test sets using replicate weights. Methods implemented in this package are described in: A. Iparragirre, T. Lumley, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.578>.

r-shiny-tailwind 0.2.2
Propagated dependencies: r-shiny@1.11.1 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/kylebutts/shiny.tailwind
Licenses: Expat
Synopsis: 'TailwindCSS' for Shiny Apps
Description:

Allows TailwindCSS to be used in Shiny apps with just-in-time compiling, custom css with @apply directive, and custom tailwind configurations.

r-scryr 1.0.0
Propagated dependencies: r-tibble@3.3.0 r-purrr@1.2.0 r-httr@1.4.7 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://curso-r.github.io/scryr/
Licenses: Expat
Synopsis: An Interface to the 'Scryfall' API
Description:

This package provides a simple, light, and robust interface between R and the Scryfall card data API <https://scryfall.com/docs/api>.

r-scpoem 0.1.3
Propagated dependencies: r-xgboost@1.7.11.1 r-vgam@1.1-13 r-tictoc@1.2.1 r-stringr@1.6.0 r-sctenifoldnet@1.3 r-reticulate@1.44.1 r-monocle@2.38.0 r-matrix@1.7-4 r-magrittr@2.0.4 r-glmnet@4.1-10 r-foreach@1.5.2 r-doparallel@1.0.17 r-cicero@1.28.0 r-biocgenerics@0.56.0 r-biobase@2.70.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/Houyt23/scPOEM
Licenses: GPL 2+
Synopsis: Single-Cell Meta-Path Based Omic Embedding
Description:

Provide a workflow to jointly embed chromatin accessibility peaks and expressed genes into a shared low-dimensional space using paired single-cell ATAC-seq (scATAC-seq) and single-cell RNA-seq (scRNA-seq) data. It integrates regulatory relationships among peak-peak interactions (via Cicero'), peak-gene interactions (via Lasso, random forest, and XGBoost), and gene-gene interactions (via principal component regression). With the input of paired scATAC-seq and scRNA-seq data matrices, it assigns a low-dimensional feature vector to each gene and peak. Additionally, it supports the reconstruction of gene-gene network with low-dimensional projections (via epsilon-NN) and then the comparison of the networks of two conditions through manifold alignment implemented in scTenifoldNet'. See <doi:10.1093/bioinformatics/btaf483> for more details.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208