_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-spurs 2.0.3
Propagated dependencies: r-mass@7.3-65 r-lattice@0.22-7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spuRs
Licenses: GPL 3
Build system: r
Synopsis: Functions and Datasets for "Introduction to Scientific Programming and Simulation Using R"
Description:

This package provides functions and datasets from Jones, O.D., R. Maillardet, and A.P. Robinson. 2014. An Introduction to Scientific Programming and Simulation, Using R. 2nd Ed. Chapman And Hall/CRC.

r-scpoem 0.1.3
Propagated dependencies: r-xgboost@1.7.11.1 r-vgam@1.1-13 r-tictoc@1.2.1 r-stringr@1.6.0 r-sctenifoldnet@1.3 r-reticulate@1.44.1 r-monocle@2.38.0 r-matrix@1.7-4 r-magrittr@2.0.4 r-glmnet@4.1-10 r-foreach@1.5.2 r-doparallel@1.0.17 r-cicero@1.28.0 r-biocgenerics@0.56.0 r-biobase@2.70.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/Houyt23/scPOEM
Licenses: GPL 2+
Build system: r
Synopsis: Single-Cell Meta-Path Based Omic Embedding
Description:

Provide a workflow to jointly embed chromatin accessibility peaks and expressed genes into a shared low-dimensional space using paired single-cell ATAC-seq (scATAC-seq) and single-cell RNA-seq (scRNA-seq) data. It integrates regulatory relationships among peak-peak interactions (via Cicero'), peak-gene interactions (via Lasso, random forest, and XGBoost), and gene-gene interactions (via principal component regression). With the input of paired scATAC-seq and scRNA-seq data matrices, it assigns a low-dimensional feature vector to each gene and peak. Additionally, it supports the reconstruction of gene-gene network with low-dimensional projections (via epsilon-NN) and then the comparison of the networks of two conditions through manifold alignment implemented in scTenifoldNet'. See <doi:10.1093/bioinformatics/btaf483> for more details.

r-soilconservation 1.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SoilConservation
Licenses: GPL 3
Build system: r
Synopsis: Soil and Water Conservation
Description:

Includes four functions: RFactor_calc(), RFactor_est(), KFactor() and SoilLoss(). The rainfall erosivity factors can be calculated or estimated, and soil erodibility will be estimated by the equation extracted from the monograph. Soil loss will be estimated by the product of five factors (rainfall erosivity, soil erodibility, length and steepness slope, cover-management factor and support practice factor. In the future, additional functions can be included. This efforts to advance research in soil and water conservation, with fast and accurate results.

r-sgsr 1.5.0
Propagated dependencies: r-tidyr@1.3.1 r-terra@1.8-86 r-spatstat-geom@3.6-1 r-sf@1.0-23 r-samplingbigdata@1.0.0 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-clhs@0.9.2 r-balancedsampling@2.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tgoodbody/sgsR
Licenses: GPL 3+
Build system: r
Synopsis: Structurally Guided Sampling
Description:

Structurally guided sampling (SGS) approaches for airborne laser scanning (ALS; LIDAR). Primary functions provide means to generate data-driven stratifications & methods for allocating samples. Intermediate functions for calculating and extracting important information about input covariates and samples are also included. Processing outcomes are intended to help forest and environmental management practitioners better optimize field sample placement as well as assess and augment existing sample networks in the context of data distributions and conditions. ALS data is the primary intended use case, however any rasterized remote sensing data can be used, enabling data-driven stratifications and sampling approaches.

r-submax 1.1.5
Propagated dependencies: r-sensitivityfull@1.5.6 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=submax
Licenses: GPL 2
Build system: r
Synopsis: Effect Modification in Observational Studies Using the Submax Method
Description:

Effect modification occurs if a treatment effect is larger or more stable in certain subgroups defined by observed covariates. The submax or subgroup-maximum method of Lee et al. (2018) <doi:10.1111/biom.12884> does an overall test and separate tests in subgroups, correcting for multiple testing using the joint distribution.

r-s2net 1.0.7
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jlaria/s2net
Licenses: GPL 2+
Build system: r
Synopsis: The Generalized Semi-Supervised Elastic-Net
Description:

This package implements the generalized semi-supervised elastic-net. This method extends the supervised elastic-net problem, and thus it is a practical solution to the problem of feature selection in semi-supervised contexts. Its mathematical formulation is presented from a general perspective, covering a wide range of models. We focus on linear and logistic responses, but the implementation could be easily extended to other losses in generalized linear models. We develop a flexible and fast implementation, written in C++ using RcppArmadillo and integrated into R via Rcpp modules. See Culp, M. 2013 <doi:10.1080/10618600.2012.657139> for references on the Joint Trained Elastic-Net.

r-spocc 1.2.4
Propagated dependencies: r-wk@0.9.4 r-whisker@0.4.1 r-tibble@3.3.0 r-s2@1.1.9 r-rvertnet@0.8.4 r-ridigbio@0.4.1 r-rgbif@3.8.4 r-rebird@1.3.0 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-data-table@1.17.8 r-crul@1.6.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ropensci/spocc
Licenses: Expat
Build system: r
Synopsis: Interface to Species Occurrence Data Sources
Description:

This package provides a programmatic interface to many species occurrence data sources, including Global Biodiversity Information Facility ('GBIF'), iNaturalist', eBird', Integrated Digitized Biocollections ('iDigBio'), VertNet', Ocean Biogeographic Information System ('OBIS'), and Atlas of Living Australia ('ALA'). Includes functionality for retrieving species occurrence data, and combining those data.

r-spdgp 0.1.0
Propagated dependencies: r-vctrs@0.6.5 r-spdep@1.4-1 r-spatialreg@1.4-2 r-smoothmest@0.1-3 r-sf@1.0-23 r-rlang@1.1.6 r-matrix@1.7-4 r-mass@7.3-65 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://josiahparry.github.io/spdgp/
Licenses: Expat
Build system: r
Synopsis: Simulate Spatial Data Generation Processes
Description:

This package provides functionality for simulating data generation processes across various spatial regression models, conceptually aligned with the dgp module of the Python library spreg <https://pysal.org/spreg/api.html#dgp>.

r-sharpr2 1.1.1.0
Propagated dependencies: r-mvtnorm@1.3-3 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sharpr2
Licenses: GPL 2+
Build system: r
Synopsis: Estimating Regulatory Scores and Identifying ATAC-STARR Data
Description:

An algorithm for identifying high-resolution driver elements for datasets from a high-definition reporter assay library. Xinchen Wang, Liang He, Sarah Goggin, Alham Saadat, Li Wang, Melina Claussnitzer, Manolis Kellis (2017) <doi:10.1101/193136>.

r-samprior 2.0.0
Propagated dependencies: r-rbest@1.8-2 r-metrics@0.1.4 r-matchit@4.7.2 r-ggplot2@4.0.1 r-checkmate@2.3.3 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SAMprior
Licenses: GPL 3+
Build system: r
Synopsis: Self-Adapting Mixture (SAM) Priors
Description:

Implementation of the SAM prior and generation of its operating characteristics for dynamically borrowing information from historical data. For details, please refer to Yang et al. (2023) <doi:10.1111/biom.13927>.

r-scriptexec 0.3.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/sagiegurari/scriptexec
Licenses: ASL 2.0
Build system: r
Synopsis: Execute Native Scripts
Description:

Run complex native scripts with a single command, similar to system commands.

r-simcausal 0.5.7
Propagated dependencies: r-stringr@1.6.0 r-r6@2.6.1 r-matrix@1.7-4 r-igraph@2.2.1 r-data-table@1.17.8 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/osofr/simcausal
Licenses: GPL 2
Build system: r
Synopsis: Simulating Longitudinal Data with Causal Inference Applications
Description:

This package provides a flexible tool for simulating complex longitudinal data using structural equations, with emphasis on problems in causal inference. Specify interventions and simulate from intervened data generating distributions. Define and evaluate treatment-specific means, the average treatment effects and coefficients from working marginal structural models. User interface designed to facilitate the conduct of transparent and reproducible simulation studies, and allows concise expression of complex functional dependencies for a large number of time-varying nodes. See the package vignette for more information, documentation and examples.

r-syncdr 0.1.1
Propagated dependencies: r-secretbase@1.0.5 r-rstudioapi@0.17.1 r-knitr@1.50 r-joyn@0.3.0 r-fs@1.6.6 r-dt@0.34.0 r-digest@0.6.39 r-data-table@1.17.8 r-collapse@2.1.5 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://rossanatat.github.io/syncdr/
Licenses: Expat
Build system: r
Synopsis: Facilitate File Handling, Directory Comparison & Synchronization
Description:

Compare directories flexibly (by date, content, or both) and synchronize files efficiently, with asymmetric and symmetric modes, helper tools, and visualization support for file management.

r-swarmverse 0.1.1
Propagated dependencies: r-trackdf@0.3.3 r-swarm@0.6.0 r-rtsne@0.17 r-pbapply@1.7-4 r-geosphere@1.5-20
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://marinapapa.github.io/swaRmverse/
Licenses: GPL 3
Build system: r
Synopsis: Swarm Space Creation
Description:

This package provides a pipeline for the comparative analysis of collective movement data (e.g. fish schools, bird flocks, baboon troops) by processing 2-dimensional positional data (x,y,t) from GPS trackers or computer vision tracking systems, discretizing events of collective motion, calculating a set of established metrics that characterize each event, and placing the events in a multi-dimensional swarm space constructed from these metrics. The swarm space concept, the metrics and data sets included are described in: Papadopoulou Marina, Furtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. (2023) <doi:10.1098/rstb.2022.0068>.

r-shapboost 1.0.3
Propagated dependencies: r-xgboost@1.7.11.1 r-shapforxgboost@0.1.3 r-matrix@1.7-4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/O-T-O-Z/SHAPBoost-R
Licenses: Expat
Build system: r
Synopsis: The SHAPBoost Feature Selection Algorithm
Description:

The implementation of SHAPBoost, a boosting-based feature selection technique that ranks features iteratively based on Shapley values.

r-stxplore 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-stars@0.6-8 r-spacetime@1.3-3 r-sp@2.2-0 r-rlang@1.1.6 r-rcolorbrewer@1.1-3 r-magrittr@2.0.4 r-lubridate@1.9.4 r-gstat@2.1-4 r-gridextra@2.3 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-ggmap@4.0.2 r-fields@17.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://sevvandi.github.io/stxplore/
Licenses: GPL 3+
Build system: r
Synopsis: Exploration of Spatio-Temporal Data
Description:

This package provides a set of statistical tools for spatio-temporal data exploration. Includes simple plotting functions, covariance calculations and computations similar to principal component analysis for spatio-temporal data. Can use both dataframes and stars objects for all plots and computations. For more details refer Spatio-Temporal Statistics with R (Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie, 2019, ISBN:9781138711136).

r-soas 1.4-1
Propagated dependencies: r-sfsmisc@1.1-23 r-partitions@1.10-9 r-lhs@1.2.0 r-igraph@2.2.1 r-frf2@2.3-4 r-doe-base@1.2-5 r-conf-design@2.0.0 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/bertcarnell/SOAs
Licenses: GPL 2+
Build system: r
Synopsis: Creation of Stratum Orthogonal Arrays
Description:

This package creates stratum orthogonal arrays (also known as strong orthogonal arrays). These are arrays with more levels per column than the typical orthogonal array, and whose low order projections behave like orthogonal arrays, when collapsing levels to coarser strata. Details are described in Groemping (2022) "A unifying implementation of stratum (aka strong) orthogonal arrays" <http://www1.bht-berlin.de/FB_II/reports/Report-2022-002.pdf>.

r-skytrackr 2.0
Propagated dependencies: r-zoo@1.8-14 r-tidyterra@1.0.0 r-tidyr@1.3.1 r-terra@1.8-86 r-skylight@1.4 r-sfdep@0.2.5 r-sf@1.0-23 r-rlang@1.1.6 r-plotly@4.11.0 r-patchwork@1.3.2 r-mapview@2.11.4 r-ggplot2@4.0.1 r-geosphere@1.5-20 r-dplyr@1.1.4 r-cli@3.6.5 r-circular@0.5-2 r-bayesiantools@0.1.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/bluegreen-labs/skytrackr
Licenses: AGPL 3
Build system: r
Synopsis: Sky Illuminance Location Tracker
Description:

Calculate geolocations by light using template matching. The routine uses a calibration free optimization of a sky illuminance model to determine locations robustly using a template matching approach, as described by Ekstrom (2004) <https://nipr.repo.nii.ac.jp/records/2496>, and behaviourly informed constraints (step-selection).

r-scva 1.3.1
Propagated dependencies: r-scales@1.4.0 r-plotly@4.11.0 r-ggplot2@4.0.1 r-ggextra@0.11.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SCVA
Licenses: GPL 2+
Build system: r
Synopsis: Single-Case Visual Analysis
Description:

Make graphical representations of single case data and transform graphical displays back to raw data, as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>. The package also includes tools for visually analyzing single-case data, by displaying central location, variability and trend.

r-stplanr 1.2.3
Propagated dependencies: r-sfheaders@0.4.5 r-sf@1.0-23 r-rlang@1.1.6 r-rcpp@1.1.0 r-pbapply@1.7-4 r-od@0.5.1 r-nabor@0.5.0 r-magrittr@2.0.4 r-lwgeom@0.2-14 r-jsonlite@2.0.0 r-httr@1.4.7 r-geosphere@1.5-20 r-dplyr@1.1.4 r-data-table@1.17.8 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ropensci/stplanr
Licenses: Expat
Build system: r
Synopsis: Sustainable Transport Planning
Description:

This package provides tools for transport planning with an emphasis on spatial transport data and non-motorized modes. The package was originally developed to support the Propensity to Cycle Tool', a publicly available strategic cycle network planning tool (Lovelace et al. 2017) <doi:10.5198/jtlu.2016.862>, but has since been extended to support public transport routing and accessibility analysis (Moreno-Monroy et al. 2017) <doi:10.1016/j.jtrangeo.2017.08.012> and routing with locally hosted routing engines such as OSRM (Lowans et al. 2023) <doi:10.1016/j.enconman.2023.117337>. The main functions are for creating and manipulating geographic "desire lines" from origin-destination (OD) data (building on the od package); calculating routes on the transport network locally and via interfaces to routing services such as <https://cyclestreets.net/> (Desjardins et al. 2021) <doi:10.1007/s11116-021-10197-1>; and calculating route segment attributes such as bearing. The package implements the travel flow aggregration method described in Morgan and Lovelace (2020) <doi:10.1177/2399808320942779> and the OD jittering method described in Lovelace et al. (2022) <doi:10.32866/001c.33873>. Further information on the package's aim and scope can be found in the vignettes and in a paper in the R Journal (Lovelace and Ellison 2018) <doi:10.32614/RJ-2018-053>, and in a paper outlining the landscape of open source software for geographic methods in transport planning (Lovelace, 2021) <doi:10.1007/s10109-020-00342-2>.

r-stevethemes 0.1.0
Propagated dependencies: r-systemfonts@1.3.1 r-rlang@1.1.6 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://svmiller.com/stevethemes/
Licenses: Expat
Build system: r
Synopsis: Steve's 'ggplot2' Themes and Related Theme Elements
Description:

This is a compilation of my preferred themes and related theme elements for ggplot2'. I believe these themes and theme elements are aesthetically pleasing, both for pedagogical instruction and for the presentation of applied statistical research to a wide audience. These themes imply routine use of easily obtained/free fonts, simple forms of which are included in this package.

r-supmz 0.2.0
Propagated dependencies: r-magrittr@2.0.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/myaseen208/SupMZ
Licenses: GPL 2
Build system: r
Synopsis: Detecting Structural Change with Heteroskedasticity
Description:

Calculates the sup MZ value to detect the unknown structural break points under Heteroskedasticity as given in Ahmed et al. (2017) (<DOI: 10.1080/03610926.2016.1235200>).

r-simpleboot 1.1-8
Propagated dependencies: r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rdpeng/simpleboot
Licenses: GPL 2+
Build system: r
Synopsis: Simple Bootstrap Routines
Description:

Simple bootstrap routines.

r-sdlfilter 2.3.3
Propagated dependencies: r-stars@0.6-8 r-sf@1.0-23 r-pracma@2.4.6 r-maps@3.4.3 r-lubridate@1.9.4 r-gridextra@2.3 r-ggspatial@1.1.10 r-ggplot2@4.0.1 r-ggmap@4.0.2 r-geosphere@1.5-20 r-emmeans@2.0.0 r-dplyr@1.1.4 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/TakahiroShimada/SDLfilter
Licenses: GPL 2 FSDG-compatible
Build system: r
Synopsis: Filtering and Assessing the Sample Size of Tracking Data
Description:

This package provides functions to filter GPS/Argos locations, as well as assessing the sample size for the analysis of animal distributions. The filters remove temporal and spatial duplicates, fixes located at a given height from estimated high tide line, and locations with high error as described in Shimada et al. (2012) <doi:10.3354/meps09747> and Shimada et al. (2016) <doi:10.1007/s00227-015-2771-0>. Sample size for the analysis of animal distributions can be assessed by the conventional area-based approach or the alternative probability-based approach as described in Shimada et al. (2021) <doi:10.1111/2041-210X.13506>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283