Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use of Knock Out and Round Robin Techniques in preparing tournament fixtures as discussed in the Book Health and Physical Education by Dr. V K Sharma'(2018,ISBN:978-93-5272-134-4).
This package contains functions that help to determine event boundaries in event segmentation experiments by bootstrapping a critical segmentation magnitude under the null hypothesis that all key presses were randomly distributed across the experiment. Segmentation magnitude is defined as the sum of Gaussians centered at the times of the segmentation key presses performed by the participants. Within a participant, the maximum of the overlaid Gaussians is used to prevent an excessive influence of a single participant on the overall outcome (e.g. if a participant is pressing the key multiple times in succession). Further functions are included, such as plotting the results.
Identifies what optimal subset of a desired number of items should be retained in a short version of a psychometric instrument to assess the â broadestâ proportion of the construct-level content of the set of items included in the original version of the said psychometric instrument. Expects a symmetric adjacency matrix as input (undirected weighted network model). Supports brute force and simulated annealing combinatorial search algorithms.
This package provides a helper function, to bulk read SQL code from separate files and load it into an R list, where the list elements contain the individual statements and queries as strings. This works by annotating the SQL code with a name comment, which also will be the name of the list element.
This package provides functions to speed up work flow for hydrological analysis. Focused on Australian climate data (SILO climate data), hydrological models (eWater Source) and in particular South Australia (<https://water.data.sa.gov.au> hydrological data).
Troubleshooting reactive data in shiny can be difficult. These functions will convert reactive data frames into functions and load all assigned objects into your local environment. If you create a dummy input object, as the function will suggest, you will be able to test your server and ui functions interactively.
This package provides several datasets useful for processing and analysis of text in Turkish from an online shopping platform.
Implementation of uniformity tests on the circle and (hyper)sphere. The main function of the package is unif_test(), which conveniently collects more than 35 tests for assessing uniformity on S^p-1 = x in R^p : ||x|| = 1, p >= 2. The test statistics are implemented in the unif_stat() function, which allows computing several statistics for different samples within a single call, thus facilitating Monte Carlo experiments. Furthermore, the unif_stat_MC() function allows parallelizing them in a simple way. The asymptotic null distributions of the statistics are available through the function unif_stat_distr(). The core of sphunif is coded in C++ by relying on the Rcpp package. The package also provides several novel datasets and gives the replicability for the data applications/simulations in Garcà a-Portugués et al. (2021) <doi:10.1007/978-3-030-69944-4_12>, Garcà a-Portugués et al. (2023) <doi:10.3150/21-BEJ1454>, Fernández-de-Marcos and Garcà a-Portugués (2024) <doi:10.1016/j.spl.2024.110218>, and Garcà a-Portugués et al. (2025) <doi:10.1080/01621459.2025.2566414>.
The spork syntax describes label formatting concisely, supporting mixed nesting of subscripts and superscripts to arbitrary depth. It intends to be easy to read and write in plain text, and easy to convert to equivalent presentations in plotmath', latex', and html'. Greek symbols and a multiplication symbol are explicitly supported. See ?as_spork and ?as_previews.
Takes a list of character strings and forms an adjacency matrix for the times the specified characters appear together in the strings provided. For use in social network analysis and data wrangling. Simple package, comprised of three functions.
This package performs mutational signature analysis for targeted sequenced tumors. Unlike the canonical analysis of mutational signatures, SATS factorizes the mutation counts matrix into a panel context matrix (measuring the size of the targeted sequenced genome for each tumor in the unit of million base pairs (Mb)), a signature profile matrix, and a signature activity matrix. SATS also calculates the expected number of mutations attributed by a signature, namely signature burden, for each targeted sequenced tumor. For more details see Lee et al. (2024) <doi:10.1101/2023.05.18.23290188>.
There are numerous places to create and download color palettes. These are usually shared in Adobe swatch file formats of some kind. There is also often the need to use standard palettes developed within an organization to ensure that aesthetics are carried over into all projects and output. Now there is a way to read these swatch files in R and avoid transcribing or converting color values by hand or or with other programs. This package provides functions to read and inspect Adobe Color ('ACO'), Adobe Swatch Exchange ('ASE'), GIMP Palette ('GPL'), OpenOffice palette ('SOC') files and KDE Palette ('colors') files. Detailed descriptions of Adobe Color and Swatch Exchange file formats as well as other swatch file formats can be found at <http://www.selapa.net/swatches/colors/fileformats.php>.
Fitting a smooth path to a given set of noisy spherical data observed at known time points. It implements a piecewise geodesic curve fitting method on the unit sphere based on a velocity-based penalization scheme. The proposed approach is implemented using the Riemannian block coordinate descent algorithm. To understand the method and algorithm, one can refer to Bak, K. Y., Shin, J. K., & Koo, J. Y. (2023) <doi:10.1080/02664763.2022.2054962> for the case of order 1. Additionally, this package includes various functions necessary for handling spherical data.
Gain seamless access to origin-destination (OD) data from the Spanish Ministry of Transport, hosted at <https://www.transportes.gob.es/ministerio/proyectos-singulares/estudios-de-movilidad-con-big-data/opendata-movilidad>. This package simplifies the management of these large datasets by providing tools to download zone boundaries, handle associated origin-destination data, and process it efficiently with the duckdb database interface. Local caching minimizes repeated downloads, streamlining workflows for researchers and analysts. Extensive documentation is available at <https://ropenspain.github.io/spanishoddata/index.html>, offering guides on creating static and dynamic mobility flow visualizations and transforming large datasets into analysis-ready formats.
It is a hybrid spatial model that combines the variable selection capabilities of stepwise regression methods with the predictive power of the Geographically Weighted Regression(GWR) model.The developed hybrid model follows a two-step approach where the stepwise variable selection method is applied first to identify the subset of predictors that have the most significant impact on the response variable, and then a GWR model is fitted using those selected variables for spatial prediction at test or unknown locations. For method details,see Leung, Y., Mei, C. L. and Zhang, W. X. (2000).<DOI:10.1068/a3162>.This hybrid spatial model aims to improve the accuracy and interpretability of GWR predictions by selecting a subset of relevant variables through a stepwise selection process.This approach is particularly useful for modeling spatially varying relationships and improving the accuracy of spatial predictions.
Simultaneous inference procedures for high-dimensional linear models as described by Zhang, X., and Cheng, G. (2017) <doi:10.1080/01621459.2016.1166114>.
Estimates unit-level and population-level parameters from a hierarchical model in marketing applications. The package includes: Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates. For more details, see Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020) <doi:10.1177/0022243720952410> "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models". Journal of Marketing Research, 57(6), 999-1018.
This package provides tools for fitting self-validated ensemble models (SVEM; Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) in small-sample design-of-experiments and related workflows, using elastic net and relaxed elastic net regression via glmnet (Friedman et al. (2010) <doi:10.18637/jss.v033.i01>). Fractional random-weight bootstraps with anti-correlated validation copies are used to tune penalty paths by validation-weighted AIC/BIC. Supports Gaussian and binomial responses, deterministic expansion helpers for shared factor spaces, prediction with bootstrap uncertainty, and a random-search optimizer that respects mixture constraints and combines multiple responses via desirability functions. Also includes a permutation-based whole-model test for Gaussian SVEM fits (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). Package code was drafted with assistance from generative AI tools.
Health research using data from electronic health records (EHR) has gained popularity, but misclassification of EHR-derived disease status and lack of representativeness of the study sample can result in substantial bias in effect estimates and can impact power and type I error for association tests. Here, the assumed target of inference is the relationship between binary disease status and predictors modeled using a logistic regression model. SAMBA implements several methods for obtaining bias-corrected point estimates along with valid standard errors as proposed in Beesley and Mukherjee (2020) <doi:10.1101/2019.12.26.19015859>, currently under review.
Sequential Kalman filter for scalable online changepoint detection by temporally correlated data. It enables fast single and multiple change points with missing values. See the reference: Hanmo Li, Yuedong Wang, Mengyang Gu (2023), <arXiv:2310.18611>.
This package provides methods to detect structural changes in time series or random fields (spatial data). Focus is on the detection of abrupt changes or trends in independent data, but the package also provides a function to de-correlate data with dependence. The functions are based on the test suggested in Schmidt (2024) <DOI:10.3150/23-BEJ1686> and the work in Görz and Fried (2025) <DOI:10.48550/arXiv.2512.11599>.
This package provides a subgroup identification method for precision medicine based on quantitative objectives. This method can handle continuous, binary and survival endpoint for both prognostic and predictive case. For the predictive case, the method aims at identifying a subgroup for which treatment is better than control by at least a pre-specified or auto-selected constant. For the prognostic case, the method aims at identifying a subgroup that is at least better than a pre-specified/auto-selected constant. The derived signature is a linear combination of predictors, and the selected subgroup are subjects with the signature > 0. The false discover rate when no true subgroup exists is controlled at a user-specified level.
Create carousels using the JavaScript library Swiper and the package htmlwidgets'. The carousels can be displayed in the RStudio viewer pane, in Shiny applications and in R markdown documents. The package also provides a RStudio addin allowing to choose image files and to display them in the viewer pane.
Ace and Monaco editor bindings to enable a rich text widget within shiny application and provide more features, e.g. text comparison, spell checking and an extra SAS code highlight mode.