Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fast and efficient sampling from general univariate probability density functions. Implements a rejection sampling approach designed to take advantage of modern CPU caches and minimise evaluation of the target density for most samples. Many standard densities are internally implemented in C for high performance, with general user defined densities also supported. A paper describing the methodology will be released soon.
Tidies up the forecasting modeling and prediction work flow, extends the broom package with sw_tidy', sw_glance', sw_augment', and sw_tidy_decomp functions for various forecasting models, and enables converting forecast objects to "tidy" data frames with sw_sweep'.
Perform two-dimensional smoothing for spatial fields using FFT and the convolution theorem (see Gilleland 2013, <doi:10.5065/D61834G2>).
Example clinical trial data sets formatted for easy use in R.
Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.
This package contains an implementation of StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2021) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.
This package provides GIS and map utilities, plus additional modeling tools for developing cellular automata, dynamic raster models, and agent based models in SpaDES'. Included are various methods for spatial spreading, spatial agents, GIS operations, random map generation, and others. See ?SpaDES.tools for an categorized overview of these additional tools. The suggested package NLMR can be installed from the following repository: (<https://PredictiveEcology.r-universe.dev>).
This package provides efficient R and C++ routines to simulate cognitive diagnostic model data for Deterministic Input, Noisy "And" Gate ('DINA') and reduced Reparameterized Unified Model ('rRUM') from Culpepper and Hudson (2017) <doi: 10.1177/0146621617707511>, Culpepper (2015) <doi:10.3102/1076998615595403>, and de la Torre (2009) <doi:10.3102/1076998607309474>.
Simultaneous inference procedures for high-dimensional linear models as described by Zhang, X., and Cheng, G. (2017) <doi:10.1080/01621459.2016.1166114>.
Extract glyph information from font data, and translate the outline curves to flattened paths or tessellated polygons. The converted data is returned as a data.frame in easy-to-plot format.
Identifies individuals in a social network who should be the intervention subjects for a network intervention in which you have a group of targets, a group of avoiders, and a group that is neither.
This package provides an interface to the NoSQL database CouchDB (<http://couchdb.apache.org>). Methods are provided for managing databases within CouchDB', including creating/deleting/updating/transferring, and managing documents within databases. One can connect with a local CouchDB instance, or a remote CouchDB databases such as Cloudant'. Documents can be inserted directly from vectors, lists, data.frames, and JSON'. Targeted at CouchDB v2 or greater.
Semiparametric Estimation of Stochastic Frontier Models following a two step procedure: in the first step semiparametric or nonparametric regression techniques are used to relax parametric restrictions of the functional form representing technology and in the second step variance parameters are obtained by pseudolikelihood estimators or by method of moments.
An Electronic Data Capture system (EDC) and Data Standard agnostic solution that enables the pharmaceutical programming community to develop Clinical Data Interchange Standards Consortium (CDISC) Study Data Tabulation Model (SDTM) datasets in R. The reusable algorithms concept in sdtm.oak provides a framework for modular programming and can potentially automate the conversion of raw clinical data to SDTM through standardized SDTM specifications. SDTM is one of the required standards for data submission to the Food and Drug Administration (FDA) in the United States and Pharmaceuticals and Medical Devices Agency (PMDA) in Japan. SDTM standards are implemented following the SDTM Implementation Guide as defined by CDISC <https://www.cdisc.org/standards/foundational/sdtmig>.
SEM Trees and SEM Forests -- an extension of model-based decision trees and forests to Structural Equation Models (SEM). SEM trees hierarchically split empirical data into homogeneous groups each sharing similar data patterns with respect to a SEM by recursively selecting optimal predictors of these differences. SEM forests are an extension of SEM trees. They are ensembles of SEM trees each built on a random sample of the original data. By aggregating over a forest, we obtain measures of variable importance that are more robust than measures from single trees. A description of the method was published by Brandmaier, von Oertzen, McArdle, & Lindenberger (2013) <doi:10.1037/a0030001> and Arnold, Voelkle, & Brandmaier (2020) <doi:10.3389/fpsyg.2020.564403>.
Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition". This package provides another option of direct estimation using weight. This package also features alpha and beta parameter estimation on calculating process of small area. Those methods are Newton-Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.
It visualizes data along an Archimedean spiral <https://en.wikipedia.org/wiki/Archimedean_spiral>, makes so-called spiral graph or spiral chart. It has two major advantages for visualization: 1. It is able to visualize data with very long axis with high resolution. 2. It is efficient for time series data to reveal periodic patterns.
Given independent and identically distributed observations X(1), ..., X(n) from a Generalized Pareto distribution with shape parameter gamma in [-1,0], offers several estimates to compute estimates of gamma. The estimates are based on the principle of replacing the order statistics by quantiles of a distribution function based on a log--concave density function. This procedure is justified by the fact that the GPD density is log--concave for gamma in [-1,0].
Effect modification occurs if a treatment effect is larger or more stable in certain subgroups defined by observed covariates. The submax or subgroup-maximum method of Lee et al. (2018) <doi:10.1111/biom.12884> does an overall test and separate tests in subgroups, correcting for multiple testing using the joint distribution.
SigClust is a statistical method for testing the significance of clustering results. SigClust can be applied to assess the statistical significance of splitting a data set into two clusters. For more than two clusters, SigClust can be used iteratively.
This package provides a simple progress bar to use for basic and advanced users that suits all those who prefer procedural programming. It is especially useful for integration into markdown files thanks to the progress bar's customisable appearance.
The <http://standartox.uni-landau.de> database offers cleaned, harmonized and aggregated ecotoxicological test data, which can be used for assessing effects and risks of chemical concentrations found in the environment.
This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
Simulate multivariate correlated data given nonparametric marginals and their joint structure characterized by a Pearson or Spearman correlation matrix. The simulator engages the problem from a purely computational perspective. It assumes no statistical models such as copulas or parametric distributions, and can approximate the target correlations regardless of theoretical feasibility. The algorithm integrates and advances the Iman-Conover (1982) approach <doi:10.1080/03610918208812265> and the Ruscio-Kaczetow iteration (2008) <doi:10.1080/00273170802285693>. Package functions are carefully implemented in C++ for squeezing computing speed, suitable for large input in a manycore environment. Precision of the approximation and computing speed both substantially outperform various CRAN packages to date. Benchmarks are detailed in function examples. A simple heuristic algorithm is additionally designed to optimize the joint distribution in the post-simulation stage. The heuristic demonstrated good potential of achieving the same level of precision of approximation without the enhanced Iman-Conover-Ruscio-Kaczetow. The package contains a copy of Permuted Congruential Generator.