Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Identifying cell types based on expression profiles is a pillar of single cell analysis. scROSHI identifies cell types based on expression profiles of single cell analysis by utilizing previously obtained cell type specific gene sets. It takes into account the hierarchical nature of cell type relationship and does not require training or annotated data. A detailed description of the method can be found at: Prummer, Bertolini, Bosshard, Barkmann, Yates, Boeva, The Tumor Profiler Consortium, Stekhoven, and Singer (2022) <doi:10.1101/2022.04.05.487176>.
The most important function of the R package is the genetic effects analysis of small RNA in hybrid plants via two methods, and at the same time, it provides various forms of graph related to data characteristics and expression analysis. In terms of two classification methods, one is the calculation of the additive (a) and dominant (d), the other is the evaluation of expression level dominance by comparing the total expression of the small RNA in progeny with the expression level in the parent species.
An implementation of interpreted string literals. Based on the glue package by Hester & Bryan (2024) <doi:10.32614/CRAN.package.glue> but with a focus on efficiency and simplicity at a cost of flexibility.
Capable of deriving seasonal statistics, such as "normals", and analysis of seasonal data, such as departures. This package also has graphics capabilities for representing seasonal data, including boxplots for seasonal parameters, and bars for summed normals. There are many specific functions related to climatology, including precipitation normals, temperature normals, cumulative precipitation departures and precipitation interarrivals. However, this package is designed to represent any time-varying parameter with a discernible seasonal signal, such as found in hydrology and ecology.
Simulate event history data from a framework where treatment decisions and disease progression are represented as counting process. The user can specify number of events and parameters of intensities thereby creating a flexible simulation framework.
It's a collection of functions for Multiplicity Correction and Multiple Testing.
It provides users with a wide range of tools to simulate, estimate, analyze, and visualize the dynamics of stochastic differential systems in both forms Ito and Stratonovich. Statistical analysis with parallel Monte Carlo and moment equations methods of SDEs <doi:10.18637/jss.v096.i02>. Enabled many searchers in different domains to use these equations to modeling practical problems in financial and actuarial modeling and other areas of application, e.g., modeling and simulate of first passage time problem in shallow water using the attractive center (Boukhetala K, 1996) ISBN:1-56252-342-2.
This package creates a data specification that describes the columns of a table (data.frame). Provides methods to read, write, and update the specification. Checks whether a table matches its specification. See specification.data.frame(),read.spec(), write.spec(), as.csv.spec(), respecify.character(), and %matches%.data.frame().
An easy-to-use and efficient tool to estimate infectious diseases parameters using serological data. Implemented models include SIR models (basic_sir_model(), static_sir_model(), mseir_model(), sir_subpops_model()), parametric models (polynomial_model(), fp_model()), nonparametric models (lp_model()), semiparametric models (penalized_splines_model()), hierarchical models (hierarchical_bayesian_model()). The package is based on the book "Modeling Infectious Disease Parameters Based on Serological and Social Contact Data: A Modern Statistical Perspective" (Hens, Niel & Shkedy, Ziv & Aerts, Marc & Faes, Christel & Damme, Pierre & Beutels, Philippe., 2013) <doi:10.1007/978-1-4614-4072-7>.
This package implements the Bayesian model selection method with suspected latent grouping factor methodology of Metzger and Franck (2020), <doi:10.1080/00401706.2020.1739561>. SLGF detects latent heteroscedasticity or group-based regression effects based on the levels of a user-specified categorical predictor.
This package implements snake in R as a programming example, see <https://en.wikipedia.org/wiki/Snake_(video_game_genre)>.
The Stratified-Petersen Analysis System (SPAS) is designed to estimate abundance in two-sample capture-recapture experiments where the capture and recaptures are stratified. This is a generalization of the simple Lincoln-Petersen estimator. Strata may be defined in time or in space or both, and the s strata in which marking takes place may differ from the t strata in which recoveries take place. When s=t, SPAS reduces to the method described by Darroch (1961) <doi:10.2307/2332748>. When s<t, SPAS implements the methods described in Plante, Rivest, and Tremblay (1988) <doi:10.2307/2533994>. Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe the use of SPAS in estimating return of salmon stratified by time and geography. A related package, BTSPAS, deals with temporal stratification where a spline is used to model the distribution of the population over time as it passes the second capture location. This is the R-version of the (now obsolete) standalone Windows program of the same name.
This package creates images that are the proper size for social media. Beautiful plots, charts and graphs wither and die if they are not shared. Social media is perfect for this but every platform has its own image dimensions. With smpic you can easily save your plots with the exact dimensions needed for the different platforms.
Browser notifications in Shiny apps, using toastr': <https://github.com/CodeSeven/toastr#readme>.
This package performs two-sample comparisons using the restricted mean survival time (RMST) as a summary measure of the survival time distribution. Three kinds of between-group contrast metrics (i.e., the difference in RMST, the ratio of RMST and the ratio of the restricted mean time lost (RMTL)) are computed. It performs an ANCOVA-type covariate adjustment as well as unadjusted analyses for those measures.
Trains neural networks (multilayer perceptrons with one hidden layer) for bi- or multi-class classification.
This package provides routines to check identifiability of linear structural equation models and factor analysis models. The routines are based on the graphical representation of structural equation models.
This package provides a-priori, post-hoc, and compromise power-analyses for structural equation models (SEM).
This package implements a three-dimensional stochastic model of cancer growth and mutation similar to the one described in Waclaw et al. (2015) <doi:10.1038/nature14971>. Allows for interactive 3D visualizations of the simulated tumor. Provides a comprehensive summary of the spatial distribution of mutants within the tumor. Contains functions which create synthetic sequencing datasets from the generated tumor.
The goal of the SwimmeR package is to provide means of acquiring, and then analyzing, data from swimming (and diving) competitions. To that end SwimmeR allows results to be read in from .html sources, like Hy-Tek real time results pages, .pdf files, ISL results, Omega results, and (on a development basis) .hy3 files. Once read in, SwimmeR can convert swimming times (performances) between the computationally useful format of seconds reported to the 100ths place (e.g. 95.37), and the conventional reporting format (1:35.37) used in the swimming community. SwimmeR can also score meets in a variety of formats with user defined point values, convert times between courses ('LCM', SCM', SCY') and draw single elimination brackets, as well as providing a suite of tools for working cleaning swimming data. This is a developmental package, not yet mature.
Routines for solving large systems of linear equations and eigenproblems in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB). Dense and sparse problems are supported.
This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. Reliability indicators such as reliability, maintainability, availability, BMP-failure rate, RG-failure rate, mean time to failure and mean time to repair are available as well. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.
This package provides tools for spatial data analysis. Emphasis on kriging. Provides functions for prediction and simulation. Intended to be relatively straightforward, fast, and flexible.
The computer program is an efficient igneous norm algorithm and rock classification system written in R but run as shiny app.