Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a simple, novel clustering algorithm based on optimizing the silhouette width. See <doi:10.1101/2023.11.07.566055> for details.
Contains, as a main contribution, a function to fit a regression model with possibly right, left or interval censored observations and with the error distribution expressed as a mixture of G-splines. Core part of the computation is done in compiled C++ written using the Scythe Statistical Library Version 0.3.
Shapley Value Regression for calculating the relative importance of independent variables in linear regression with avoiding the collinearity.
This package provides functions for computing geographically weighted regressions are provided, based on work by Chris Brunsdon, Martin Charlton and Stewart Fotheringham.
This package provides a collection of various techniques correcting statistical models for sample selection bias is provided. In particular, the resampling-based methods "stochastic inverse-probability oversampling" and "parametric inverse-probability bagging" are placed at the disposal which generate synthetic observations for correcting classifiers for biased samples resulting from stratified random sampling. For further information, see the article Krautenbacher, Theis, and Fuchs (2017) <doi:10.1155/2017/7847531>. The methods may be used for further purposes where weighting and generation of new observations is needed.
Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>; Jensen et al., 1997). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the Henderson-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available.
This package provides functions for evaluating tournament predictions, simulating results from individual soccer matches and tournaments. See <http://sandsynligvis.dk/2018/08/03/world-cup-prediction-winners/> for more information.
This package provides a sparklyr <https://spark.posit.co/> extension that provides an R interface for XGBoost <https://github.com/dmlc/xgboost> on Apache Spark'. XGBoost is an optimized distributed gradient boosting library.
Datasets used in "Statistical Methods for the Social Sciences" (SMSS) by Alan Agresti and Barbara Finlay.
Create a scatter plot matrix, using `htmlwidgets` package and `d3.js`.
Interact with the Smartsheet platform through the Smartsheet API 2.0. <https://smartsheet.redoc.ly/>. API is an acronym for application programming interface; the Smartsheet API allows users to interact with Smartsheet sheets directly within R.
This package provides a set of functions allowing to implement the SpiceFP approach which is iterative. It involves transformation of functional predictors into several candidate explanatory matrices (based on contingency tables), to which relative edge matrices with contiguity constraints are associated. Generalized Fused Lasso regression are performed in order to identify the best candidate matrix, the best class intervals and related coefficients at each iteration. The approach is stopped when the maximal number of iterations is reached or when retained coefficients are zeros. Supplementary functions allow to get coefficients of any candidate matrix or mean of coefficients of many candidates. The methods in this package are describing in Girault Gnanguenon Guesse, Patrice Loisel, Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert (2021) "An exploratory penalized regression to identify combined effects of functional variables -Application to agri-environmental issues" <https://hal.archives-ouvertes.fr/hal-03298977>.
Access Amazon Web Service Simple Storage Service ('S3') <https://aws.amazon.com/s3/> as if it were a file system. Interface based on the R package fs'.
Calculates the sample size needed for evaluating a diagnostic test based on sensitivity, specificity, prevalence, and desired precision. Based on Buderer (1996) <doi:10.1111/j.1553-2712.1996.tb03538.x>.
This package implements functions for working with absorbing Markov chains. The implementation is based on the framework described in "Toward a unified framework for connectivity that disentangles movement and mortality in space and time" by Fletcher et al. (2019) <doi:10.1111/ele.13333>, which applies them to spatial ecology. This framework incorporates both resistance and absorption with spatial absorbing Markov chains (SAMC) to provide several short-term and long-term predictions for metrics related to connectivity in landscapes. Despite the ecological context of the framework, this package can be used in any application of absorbing Markov chains.
This package implements the Self-Similarity Test for Normality (SSTN), a new statistical test designed to assess whether a given sample originates from a normal distribution. The procedure is based on iteratively estimating the characteristic function of the sum of standardized i.i.d. random variables and comparing it to the characteristic function of the standard normal distribution. A Monte Carlo procedure is used to determine the empirical distribution of the test statistic under the null hypothesis. Details of the methodology are described in Anarat and Schwender (2025), "A normality test based on self-similarity" (Submitted).
Functions, classes and methods for time series modelling with ARIMA and related models. The aim of the package is to provide consistent interface for the user. For example, a single function autocorrelations() computes various kinds of theoretical and sample autocorrelations. This is work in progress, see the documentation and vignettes for the current functionality. Function sarima() fits extended multiplicative seasonal ARIMA models with trends, exogenous variables and arbitrary roots on the unit circle, which can be fixed or estimated (for the algebraic basis for this see <doi:10.48550/arXiv.2208.05055>, a paper on the methodology is being prepared).
This package contains methods for the simulation of positive tempered stable distributions and related subordinators. Including classical tempered stable, rapidly deceasing tempered stable, truncated stable, truncated tempered stable, generalized Dickman, truncated gamma, generalized gamma, and p-gamma. For details, see Dassios et al (2019) <doi:10.1017/jpr.2019.6>, Dassios et al (2020) <doi:10.1145/3368088>, Grabchak (2021) <doi:10.1016/j.spl.2020.109015>.
This package creates a numeric guide for writing the formula for the determinant of a square matrix (a detguide) as a function of the elements of the matrix and writes out that formula, the symbolic representation.
Spatio-temporal data have become increasingly popular in many research fields. Such data often have complex structures that are difficult to describe and estimate. This package provides reliable tools for modeling complicated spatio-temporal data. It also includes tools of online process monitoring to detect possible change-points in a spatio-temporal process over time. More specifically, the package implements the spatio-temporal mean estimation procedure described in Yang and Qiu (2018) <doi:10.1002/sim.7622>, the spatio-temporal covariance estimation procedure discussed in Yang and Qiu (2019) <doi:10.1002/sim.8315>, the three-step method for the joint estimation of spatio-temporal mean and covariance functions suggested by Yang and Qiu (2022) <doi:10.1007/s10463-021-00787-2>, the spatio-temporal disease surveillance method discussed in Qiu and Yang (2021) <doi:10.1002/sim.9150> that can accommodate the covariate effect, the spatial-LASSO-based process monitoring method proposed by Qiu and Yang (2023) <doi:10.1080/00224065.2022.2081104>, and the online spatio-temporal disease surveillance method described in Yang and Qiu (2020) <doi:10.1080/24725854.2019.1696496>.
This package provides a robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
Implementation of Stepwise Clustered Ensemble (SCE) and Stepwise Cluster Analysis (SCA) for multivariate data analysis. The package provides comprehensive tools for feature selection, model training, prediction, and evaluation in hydrological and environmental modeling applications. Key functionalities include recursive feature elimination (RFE), Wilks feature importance analysis, model validation through out-of-bag (OOB) validation, and ensemble prediction capabilities. The package supports both single and multivariate response variables, making it suitable for complex environmental modeling scenarios. For more details see Li et al. (2021) <doi:10.5194/hess-25-4947-2021>.
An interactive Shiny application to perform fast parameter inference on dynamical systems (described by ordinary differential equations) using gradient matching. Please see the project page for more details.
This package provides a system that computes metrics to assess the segmentation accuracy of geospatial data. These metrics calculate the discrepancy between segmented and reference objects, and indicate the segmentation accuracy. For more details on choosing evaluation metrics, we suggest seeing Costa et al. (2018) <doi:10.1016/j.rse.2017.11.024> and Jozdani et al. (2020) <doi:10.1016/j.isprsjprs.2020.01.002>.