_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-skedastic 2.0.3
Propagated dependencies: r-slam@0.1-55 r-roi-plugin-qpoases@1.0-3 r-roi@1.0-1 r-rfast@2.1.5.2 r-rdpack@2.6.4 r-quadprogxt@0.0.6 r-quadprog@1.5-8 r-pracma@2.4.6 r-osqp@0.6.3.3 r-mgcv@1.9-4 r-matrix@1.7-4 r-mass@7.3-65 r-inflection@1.3.7 r-compquadform@1.4.4 r-caret@7.0-1 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tjfarrar/skedastic
Licenses: Expat
Build system: r
Synopsis: Handling Heteroskedasticity in the Linear Regression Model
Description:

This package implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <doi:10.48550/arXiv.0810.2124>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

r-smoothroctime 0.1.1
Propagated dependencies: r-ks@1.15.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=smoothROCtime
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Smooth Time-Dependent ROC Curve Estimation
Description:

Computes smooth estimations for the Cumulative/Dynamic and Incident/Dynamic ROC curves, in presence of right censorship, based on the bivariate kernel density estimation of the joint distribution function of the Marker and Time-to-event variables.

r-sscor 0.2.1
Propagated dependencies: r-robustbase@0.99-6 r-pcapp@2.0-5 r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sscor
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Robust Correlation Estimation and Testing Based on Spatial Signs
Description:

This package provides the spatial sign correlation and the two-stage spatial sign correlation as well as a one-sample test for the correlation coefficient.

r-sisir 0.2.3
Propagated dependencies: r-tidyselect@1.2.1 r-tidyr@1.3.1 r-rspectra@0.16-2 r-rlang@1.1.6 r-reshape2@1.4.5 r-rcolorbrewer@1.1-3 r-ranger@0.17.0 r-purrr@1.2.0 r-mixomics@6.34.0 r-matrix@1.7-4 r-magrittr@2.0.4 r-glmnet@4.1-10 r-ggplot2@4.0.1 r-foreach@1.5.2 r-expm@1.0-0 r-dplyr@1.1.4 r-doparallel@1.0.17 r-dendextend@1.19.1 r-corelearn@1.57.3.1 r-boruta@9.0.0 r-aricode@1.0.3 r-adjclust@0.6.11
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://forgemia.inra.fr/sfcb/sisir
Licenses: GPL 2+
Build system: r
Synopsis: Select Intervals Suited for Functional Regression
Description:

Interval fusion and selection procedures for regression with functional inputs. Methods include a semiparametric approach based on Sliced Inverse Regression (SIR), as described in <doi:10.1007/s11222-018-9806-6> (standard ridge and sparse SIR are also included in the package) and a random forest based approach, as described in <doi:10.1002/sam.11705>.

r-seset 1.0.1
Propagated dependencies: r-rdpack@2.6.4 r-matrix@1.7-4 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SEset
Licenses: GPL 3
Build system: r
Synopsis: Computing Statistically-Equivalent Path Models
Description:

This package provides tools to compute and analyze the set of statistically-equivalent (Gaussian, linear) path models which generate the input precision or (partial) correlation matrix. This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools. The statistical-equivalence set of a given GGM expresses the uncertainty we have about the sign, size and direction of directed relationships based on the weights matrix of the GGM alone. The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi: 10.31234/osf.io/ryg69>.

r-sams 0.4.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sams
Licenses: GPL 3
Build system: r
Synopsis: Merge-Split Samplers for Conjugate Bayesian Nonparametric Models
Description:

Markov chain Monte Carlo samplers for posterior simulations of conjugate Bayesian nonparametric mixture models. Functionality is provided for Gibbs sampling as in Algorithm 3 of Neal (2000) <DOI:10.1080/10618600.2000.10474879>, restricted Gibbs merge-split sampling as described in Jain & Neal (2004) <DOI:10.1198/1061860043001>, and sequentially-allocated merge-split sampling <DOI:10.1080/00949655.2021.1998502>, as well as summary and utility functions.

r-snplinkage 1.2.0
Propagated dependencies: r-snprelate@1.44.0 r-reshape2@1.4.5 r-magrittr@2.0.4 r-knitr@1.50 r-gwastools@1.56.0 r-gtable@0.3.6 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-gdsfmt@1.46.0 r-data-table@1.17.8 r-cowplot@1.2.0 r-biomart@2.66.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gitlab.com/thomaschln/snplinkage
Licenses: GPL 3
Build system: r
Synopsis: Single Nucleotide Polymorphisms Linkage Disequilibrium Visualizations
Description:

Linkage disequilibrium visualizations of up to several hundreds of single nucleotide polymorphisms (SNPs), annotated with chromosomic positions and gene names. Two types of plots are available for small numbers of SNPs (<40) and for large numbers (tested up to 500). Both can be extended by combining other ggplots, e.g. association studies results, and functions enable to directly visualize the effect of SNP selection methods, as minor allele frequency filtering and TagSNP selection, with a second correlation heatmap. The SNPs correlations are computed on Genotype Data objects from the GWASTools package using the SNPRelate package, and the plots are customizable ggplot2 and gtable objects and are annotated using the biomaRt package. Usage is detailed in the vignette with example data and results from up to 500 SNPs of 1,200 scans are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>.

r-spnn 1.3.0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spnn
Licenses: GPL 2+
Build system: r
Synopsis: Scale Invariant Probabilistic Neural Networks
Description:

Scale invariant version of the original PNN proposed by Specht (1990) <doi:10.1016/0893-6080(90)90049-q> with the added functionality of allowing for smoothing along multiple dimensions while accounting for covariances within the data set. It is written in the R statistical programming language. Given a data set with categorical variables, we use this algorithm to estimate the probabilities of a new observation vector belonging to a specific category. This type of neural network provides the benefits of fast training time relative to backpropagation and statistical generalization with only a small set of known observations.

r-semds 0.9-7
Propagated dependencies: r-pracma@2.4.6 r-minpack-lm@1.2-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=semds
Licenses: GPL 2+
Build system: r
Synopsis: Structural Equation Multidimensional Scaling
Description:

Fits a structural equation multidimensional scaling (SEMDS) model for asymmetric and three-way input dissimilarities. It assumes that the dissimilarities are measured with errors. The latent dissimilarities are estimated as factor scores within an SEM framework while the objects are represented in a low-dimensional space as in MDS.

r-synthreturn 1.0.0
Propagated dependencies: r-quadprog@1.5-8 r-mirai@2.5.2 r-data-table@1.17.8 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/davidkreitmeir/synthReturn
Licenses: Expat
Build system: r
Synopsis: Synthetic Matching Method for Returns
Description:

This package implements the revised Synthetic Matching Algorithm of Kreitmeir, Lane, and Raschky (2025) <doi:10.2139/ssrn.3751162>, building on the original approach of Acemoglu, Johnson, Kermani, Kwak, and Mitton (2016) <doi:10.1016/j.jfineco.2015.10.001>, to estimate the cumulative treatment effect of an event on treated firmsâ stock returns.

r-samplesizecmh 0.0.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/pegeler/samplesizeCMH
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Power and Sample Size Calculation for the Cochran-Mantel-Haenszel Test
Description:

Calculates the power and sample size for Cochran-Mantel-Haenszel tests. There are also several helper functions for working with probability, odds, relative risk, and odds ratio values.

r-schoolmath 0.4.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=schoolmath
Licenses: GPL 2+
Build system: r
Synopsis: Functions and Datasets for Math Used in School
Description:

This package contains functions and datasets for math taught in school. A main focus is set to prime-calculation.

r-sensitivity 1.30.2
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-numbers@0.9-2 r-ggplot2@4.0.1 r-foreach@1.5.2 r-dtwclust@6.0.0 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sensitivity
Licenses: GPL 2
Build system: r
Synopsis: Global Sensitivity Analysis of Model Outputs and Importance Measures
Description:

This package provides a collection of functions for sensitivity analysis of model outputs (factor screening, global sensitivity analysis and robustness analysis), for variable importance measures of data, as well as for interpretability of machine learning models. Most of the functions have to be applied on scalar output, but several functions support multi-dimensional outputs.

r-surv2samplecomp 1.0-5
Propagated dependencies: r-survival@3.8-3 r-plotrix@3.8-13 r-flexsurv@2.3.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=surv2sampleComp
Licenses: GPL 2
Build system: r
Synopsis: Inference for Model-Free Between-Group Parameters for Censored Survival Data
Description:

This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.

r-singcar 0.1.5
Propagated dependencies: r-withr@3.0.2 r-mass@7.3-65 r-cholwishart@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jorittmo/singcar
Licenses: Expat
Build system: r
Synopsis: Comparing Single Cases to Small Samples
Description:

When comparing single cases to control populations and no parameters are known researchers and clinicians must estimate these with a control sample. This is often done when testing a case's abnormality on some variable or testing abnormality of the discrepancy between two variables. Appropriate frequentist and Bayesian methods for doing this are here implemented, including tests allowing for the inclusion of covariates. These have been developed first and foremost by John Crawford and Paul Garthwaite, e.g. in Crawford and Howell (1998) <doi:10.1076/clin.12.4.482.7241>, Crawford and Garthwaite (2005) <doi:10.1037/0894-4105.19.3.318>, Crawford and Garthwaite (2007) <doi:10.1080/02643290701290146> and Crawford, Garthwaite and Ryan (2011) <doi:10.1016/j.cortex.2011.02.017>. The package is also equipped with power calculators for each method.

r-socialmixr 0.5.1
Propagated dependencies: r-xml2@1.5.0 r-wpp2017@1.2-3 r-rlang@1.1.6 r-purrr@1.2.0 r-oai@0.4.0 r-memoise@2.0.1 r-lubridate@1.9.4 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-httr@1.4.7 r-data-table@1.17.8 r-curl@7.0.0 r-countrycode@1.6.1 r-cli@3.6.5 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/epiforecasts/socialmixr
Licenses: Expat
Build system: r
Synopsis: Social Mixing Matrices for Infectious Disease Modelling
Description:

This package provides methods for sampling contact matrices from diary data for use in infectious disease modelling, as discussed in Mossong et al. (2008) <doi:10.1371/journal.pmed.0050074>.

r-spatialposition 2.1.3
Propagated dependencies: r-sp@2.2-0 r-sf@1.0-23 r-raster@3.6-32 r-isoband@0.2.7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/riatelab/SpatialPosition
Licenses: GPL 3
Build system: r
Synopsis: Spatial Position Models
Description:

Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.

r-snn 1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=snn
Licenses: GPL 3
Build system: r
Synopsis: Stabilized Nearest Neighbor Classifier
Description:

Implement K-nearest neighbor classifier, weighted nearest neighbor classifier, bagged nearest neighbor classifier, optimal weighted nearest neighbor classifier and stabilized nearest neighbor classifier, and perform model selection via 5 fold cross-validation for them. This package also provides functions for computing the classification error and classification instability of a classification procedure.

r-setweaver 1.0.0
Propagated dependencies: r-splittools@1.0.1 r-pheatmap@1.0.13 r-permutes@2.8 r-igraph@2.2.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/nicolasleenaerts/setweaver
Licenses: FSDG-compatible
Build system: r
Synopsis: Building Sets of Variables in a Probabilistic Framework
Description:

Create sets of variables based on a mutual information approach. In this context, a set is a collection of distinct elements (e.g., variables) that can also be treated as a single entity. Mutual information, a concept from probability theory, quantifies the dependence between two variables by expressing how much information about one variable can be gained from observing the other. Furthermore, you can analyze, and visualize these sets in order to better understand the relationships among variables.

r-sofia 1.0
Dependencies: circos@0.69-9
Propagated dependencies: r-png@0.1-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://cggl.horticulture.wisc.edu
Licenses: GPL 3
Build system: r
Synopsis: Making Sophisticated and Aesthetical Figures in R
Description:

Software that leverages the capabilities of Circos by manipulating data, preparing configuration files, and running the Perl-native Circos directly from the R environment with minimal user intervention. Circos is a novel software that addresses the challenges in visualizing genetic data by creating circular ideograms composed of tracks of heatmaps, scatter plots, line plots, histograms, links between common markers, glyphs, text, and etc. Please see <http://www.circos.ca>.

r-sipdibge 0.2.1
Propagated dependencies: r-tibble@3.3.0 r-rstudioapi@0.17.1 r-purrr@1.2.0 r-pnsibge@0.2.1 r-png@0.1-8 r-pndsibge@0.1.1 r-pnadcibge@0.7.5 r-covidibge@0.2.2 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SIPDIBGE
Licenses: GPL 3
Build system: r
Synopsis: Collection of Household Survey Packages Conducted by IBGE
Description:

This package provides access to packages developed for downloading, reading and analyzing microdata from household surveys in Integrated System of Household Surveys - SIPD conducted by Brazilian Institute of Geography and Statistics - IBGE. More information can be obtained from the official website <https://www.ibge.gov.br/>.

r-semtests 0.7.1
Propagated dependencies: r-rspectra@0.16-2 r-matrix@1.7-4 r-mass@7.3-65 r-lavaan@0.6-20 r-compquadform@1.4.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/JonasMoss/semTests
Licenses: GPL 3+
Build system: r
Synopsis: Goodness-of-Fit Testing for Structural Equation Models
Description:

Supports eigenvalue block-averaging p-values (Foldnes, Grønneberg, 2018) <doi:10.1080/10705511.2017.1373021>, penalized eigenvalue block-averaging p-values (Foldnes, Moss, Grønneberg, 2024) <doi:10.1080/10705511.2024.2372028>, penalized regression p-values (Foldnes, Moss, Grønneberg, 2024) <doi:10.1080/10705511.2024.2372028>, as well as traditional p-values such as Satorra-Bentler. All p-values can be calculated using unbiased or biased gamma estimates (Du, Bentler, 2022) <doi:10.1080/10705511.2022.2063870> and two choices of chi square statistics.

r-scrollrevealr 0.2.0
Propagated dependencies: r-htmltools@0.5.8.1 r-glue@1.8.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/feddelegrand7/scrollrevealR
Licenses: Expat
Build system: r
Synopsis: Animate 'shiny' Elements when They Scroll into View using the 'scrollrevealjs' Library
Description:

Allows the user to animate shiny elements when scrolling to view them. The animations are activated using the scrollrevealjs library. See <https://scrollrevealjs.org/> for more information.

r-stltdnn 0.1.0
Propagated dependencies: r-nnfor@0.9.9 r-forecast@8.24.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stlTDNN
Licenses: GPL 3
Build system: r
Synopsis: STL Decomposition and TDNN Hybrid Time Series Forecasting
Description:

Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283