Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a simple authentification mechanism for single shiny applications. Authentification and password change functionality are performed calling user provided functions that typically access some database backend. Source code of main applications is protected until authentication is successful.
This package implements Multivariate ANalysis Of VAriance (MANOVA) parameters inference and test with regularization for semicontinuous high-dimensional data. The method can be applied also in presence of low-dimensional data. The p-value can be obtained through asymptotic distribution or using a permutation procedure. The package gives also the possibility to simulate this type of data. Method is described in Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054. DOI <doi:10.1002/bimj.70054>, arXiv DOI <doi:10.48550/arXiv.2401.04036>.
SigClust is a statistical method for testing the significance of clustering results. SigClust can be applied to assess the statistical significance of splitting a data set into two clusters. For more than two clusters, SigClust can be used iteratively.
Perform a Bayesian estimation of the exploratory Sparse Latent Class Model for Binary Data described by Chen, Y., Culpepper, S. A., and Liang, F. (2020) <doi:10.1007/s11336-019-09693-2>.
This package provides functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.
This package provides a convenient interface for formatting SQL queries directly within R'. It acts as a wrapper around the sql_format Rust crate. The package allows you to format SQL code with customizable options, including indentation, case formatting, and more, ensuring your SQL queries are clean, readable, and consistent.
Simulates the cultural evolution of quantitative traits of bird song. SongEvo is an individual- (agent-) based model. SongEvo is spatially-explicit and can be parameterized with, and tested against, measured song data. Functions are available for model implementation, sensitivity analyses, parameter optimization, model validation, and hypothesis testing.
This package provides a set of tools for writing and sharing interactive courses to be used with swirl.
Uses a novel rank-based nonparametric approach to evaluate a surrogate marker in a small sample size setting. Details are described in Parast et al (2024) <doi:10.1093/biomtc/ujad035> and Hughes A et al (2025) <doi:10.1002/sim.70241>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogaterank> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/SurrogateRankApp/>.
Secure handling of API keys can be difficult. This package provides secure convenience functions for entering / handling API keys and opening connections via inversion of control on those keys. Works seamlessly between production and developer environments.
Single-cell Interpretable Tensor Decomposition (scITD) employs the Tucker tensor decomposition to extract multicell-type gene expression patterns that vary across donors/individuals. This tool is geared for use with single-cell RNA-sequencing datasets consisting of many source donors. The method has a wide range of potential applications, including the study of inter-individual variation at the population-level, patient sub-grouping/stratification, and the analysis of sample-level batch effects. Each "multicellular process" that is extracted consists of (A) a multi cell type gene loadings matrix and (B) a corresponding donor scores vector indicating the level at which the corresponding loadings matrix is expressed in each donor. Additional methods are implemented to aid in selecting an appropriate number of factors and to evaluate stability of the decomposition. Additional tools are provided for downstream analysis, including integration of gene set enrichment analysis and ligand-receptor analysis. Tucker, L.R. (1966) <doi:10.1007/BF02289464>. Unkel, S., Hannachi, A., Trendafilov, N. T., & Jolliffe, I. T. (2011) <doi:10.1007/s13253-011-0055-9>. Zhou, G., & Cichocki, A. (2012) <doi:10.2478/v10175-012-0051-4>.
This package provides functions to retrieve, process, analyze, and quality-control marine physical, chemical, and biological data. The main focus is on Swedish monitoring data available through the SHARK database <https://shark.smhi.se/en/>, with additional API support for Nordic Microalgae <https://nordicmicroalgae.org/>, Dyntaxa <https://artfakta.se/>, World Register of Marine Species ('WoRMS') <https://www.marinespecies.org>, AlgaeBase <https://www.algaebase.org>, OBIS xylookup web service <https://iobis.github.io/xylookup/> and Intergovernmental Oceanographic Commission (IOC) - UNESCO databases on harmful algae <https://www.marinespecies.org/hab/> and toxins <https://toxins.hais.ioc-unesco.org/>.
Allows user to conduct a simulation based quantitative bias analysis using covariate structures generated with individual-level data to characterize the bias arising from unmeasured confounding. Users can specify their desired data generating mechanisms to simulate data and quantitatively summarize findings in an end-to-end application using this package.
Set of functions that access information about deputies and votings in Polish diet from webpage <http://www.sejm.gov.pl>. The package was developed as a result of an internship in MI2 Group - <http://mi2.mini.pw.edu.pl>, Faculty of Mathematics and Information Science, Warsaw University of Technology.
Enforcement of field types in lists. A drop-in tool to allow for dynamic input data that might be questionably parsed or cast to be coerced into the specific desired format in a reasonably performant manner.
Gives design points from a sequential full factorial-based Latin hypercube design, as described in Duan, Ankenman, Sanchez, and Sanchez (2015, Technometrics, <doi:10.1080/00401706.2015.1108233>).
Setaria viridis (green foxtail) is a common weed. This package contains measurements from individual branches of a wild Setaria viridis plant collected near the author's home. The data is intended for use in data analysis practice.
Building predictive models with stacking which is a type of ensemble learning. Learners can be specified from those implemented in caret'. For more information of the package, see Nukui and Onogi (2023) <doi:10.1101/2023.06.06.543970>.
Sejong(http://www.sejong.or.kr/) corpus and Hannanum(http://semanticweb.kaist.ac.kr/home/index.php/HanNanum) dictionaries for KoNLP.
Tree-structured modelling of categorical predictors (Tutz and Berger (2018), <doi:10.1007/s11634-017-0298-6>) or measurement units (Berger and Tutz (2018), <doi:10.1080/10618600.2017.1371030>).
This package provides functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.
Sleep cycles are largely detected according to the originally proposed criteria by Feinberg & Floyd (1979) <doi:10.1111/j.1469-8986.1979.tb02991.x> as described in Blume & Cajochen (2021) <doi:10.1016/j.mex.2021.101318>.
Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called signature (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
Build a project framework for users with access to only the most basic of automation tools.