Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Used to construct the URLs and parameters of Socrata Open Data API <https://dev.socrata.com> calls, using the API's SoQL parameter format. Has method-chained and sensical syntax. Plays well with pipes.
Exploratory analysis on any input data describing the structure and the relationships present in the data. The package automatically select the variable and does related descriptive statistics. Analyzing information value, weight of evidence, custom tables, summary statistics, graphical techniques will be performed for both numeric and categorical predictors.
This package contains all the formulae of the growth and trace element uptake model described in the equally-named Geoscientific Model Development paper (de Winter, 2017, <doi:10.5194/gmd-2017-137>). The model takes as input a file with X- and Y-coordinates of digitized growth increments recognized on a longitudinal cross section through the bivalve shell, as well as a BMP file of an elemental map of the cross section surface with chemically distinct phases separated by phase analysis. It proceeds by a step-by-step process described in the paper, by which digitized growth increments are used to calculate changes in shell height, shell thickness, shell volume, shell mass and shell growth rate through the bivalve's life time. Then, results of this growth modelling are combined with the trace element mapping results to trace the incorporation of trace elements into the bivalve shell. Results of various modelling parameters can be exported in the form of XLSX files.
Fits bi-variate ellipses to stable isotope data using Bayesian inference with the aim being to describe and compare their isotopic niche.
Interface for data stream clustering algorithms implemented in the MOA (Massive Online Analysis) framework (Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer (2010). MOA: Massive Online Analysis, Journal of Machine Learning Research 11: 1601-1604).
Social risks are increasingly becoming a critical component of health care research. One of the most common ways to identify social needs is by using ICD-10-CM "Z-codes." This package identifies social risks using varying taxonomies of ICD-10-CM Z-codes from administrative health care data. The conceptual taxonomies come from: Centers for Medicare and Medicaid Services (2021) <https://www.cms.gov/files/document/zcodes-infographic.pdf>, Reidhead (2018) <https://web.mhanet.com/>, A Arons, S DeSilvey, C Fichtenberg, L Gottlieb (2018) <https://sirenetwork.ucsf.edu/tools-resources/resources/compendium-medical-terminology-codes-social-risk-factors>.
This package provides models to identify bimodally expressed genes from RNAseq data based on the Bimodality Index. SIBERG models the RNAseq data in the finite mixture modeling framework and incorporates mechanisms for dealing with RNAseq normalization. Three types of mixture models are implemented, namely, the mixture of log normal, negative binomial, or generalized Poisson distribution. See Tong et al. (2013) <doi:10.1093/bioinformatics/bts713>.
Easily calculate precession and obliquity from an orbital solution (defaults to ZB18a from Zeebe and Lourens (2019) <doi:10.1126/science.aax0612>) and assumed or reconstructed values for tidal dissipation (Td) and dynamical ellipticity (Ed). This is a translation and adaptation of the C'-code in the supplementary material to Zeebe and Lourens (2022) <doi:10.1029/2021PA004349>, with further details on the methodology described in Zeebe (2022) <doi:10.3847/1538-3881/ac80f8>. The name of the C'-routine is snvec', which refers to the key units of computation: spin vector s and orbit normal vector n.
Univariate and multivariate normal data simulation. They also supply a brief summary of the analysis for each experiment/design: - Independent samples. - One-way and two-way Anova. - Paired samples (T-Test & Regression). - Repeated measures (Anova & Multiple Regression). - Clinical Assay.
Simulate age-structured populations that vary in space and time and explore the efficacy of a range of built-in or user-defined sampling protocols to reproduce the population parameters of the known population. (See Regular et al. (2020) <doi:10.1371/journal.pone.0232822> for more details).
All data in the book "Statistical Methods in Biology" by Welham et al. (2015) <doi:10.1201/b17336> with a corresponding documentation and illustrative analysis of the data.
This package contains functionality for regression standardization. Four general classes of models are allowed; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models and shared frailty gamma-Weibull models. Sjolander, A. (2016) <doi:10.1007/s10654-016-0157-3>.
Develop spatial interaction models (SIMs). SIMs predict the amount of interaction, for example number of trips per day, between geographic entities representing trip origins and destinations. Contains functions for creating origin-destination datasets from geographic input datasets and calculating movement between origin-destination pairs with constrained, production-constrained, and attraction-constrained models (Wilson 1979) <doi:10.1068/a030001>.
Population genetics package for designing diagnostic panels. Candidate markers, marker combinations, and different panel sizes are assessed for how well they can predict the source population of known samples. Requires a genotype file of candidate markers in STRUCTURE format. Methods for population cross-validation are described in Jombart (2008) <doi:10.1093/bioinformatics/btn129>.
Package performs Cox regression and survival distribution function estimation when the survival times are subject to double truncation. In case that the survival and truncation times are quasi-independent, the estimation procedure for each method involves inverse probability weighting, where the weights correspond to the inverse of the selection probabilities and are estimated using the survival times and truncation times only. A test for checking this independence assumption is also included in this package. The functions available in this package for Cox regression, survival distribution function estimation, and testing independence under double truncation are based on the following methods, respectively: Rennert and Xie (2018) <doi:10.1111/biom.12809>, Shen (2010) <doi:10.1007/s10463-008-0192-2>, Martin and Betensky (2005) <doi:10.1198/016214504000001538>. When the survival times are dependent on at least one of the truncation times, an EM algorithm is employed to obtain point estimates for the regression coefficients. The standard errors are calculated using the bootstrap method. See Rennert and Xie (2022) <doi:10.1111/biom.13451>. Both the independent and dependent cases assume no censoring is present in the data. Please contact Lior Rennert <liorr@clemson.edu> for questions regarding function coxDT and Yidan Shi <yidan.shi@pennmedicine.upenn.edu> for questions regarding function coxDTdep.
Set of tools to fit a semi-parametric regression model suitable for analysis of data sets in which the response variable is continuous, strictly positive, asymmetric and possibly, censored. Under this setup, both the median and the skewness of the response variable distribution are explicitly modeled by using semi-parametric functions, whose non-parametric components may be approximated by natural cubic splines or P-splines. Supported distributions for the model error include log-normal, log-Student-t, log-power-exponential, log-hyperbolic, log-contaminated-normal, log-slash, Birnbaum-Saunders and Birnbaum-Saunders-t distributions.
This package provides functions for coarse-to-fine spatial modeling (CFSM), enabling fast spatial prediction, regression, and uncertainty quantification. For further details, see Murakami et al. (2025) <doi:10.48550/arXiv.2510.00968>.
Data obtained from surveys contains information not only about the survey responses, but also the survey metadata, e.g. the original survey questions and the answer options. The surveydata package makes it easy to keep track of this metadata, and to easily extract columns with specific questions.
Get the most appropriate autoregressive integrated moving average, generalized auto-regressive conditional heteroscedasticity and Markov switching GARCH model. For method details see Haas M, Mittnik S, Paolella MS (2004). <doi:10.1093/jjfinec/nbh020>, Bollerslev T (1986). <doi:10.1016/0304-4076(86)90063-1>.
An open-source R package for structuring, maintaining, running, and debugging statistical simulations on both local and cluster-based computing environments.See full documentation at <https://avi-kenny.github.io/SimEngine/>.
This package provides functions to combine, normalize and visualize spectral data, perform principal component analysis (PCA), and assemble customizable image grids suitable for publication-quality scientific figures.
Implementation of the Stochastic Multi-Criteria Acceptability Analysis (SMAA) family of Multiple Criteria Decision Analysis (MCDA) methods. Tervonen, T. and Figueira, J. R. (2008) <doi:10.1002/mcda.407>.
Randomization of presence/absence species distribution raster data with or without including spatial structure for calculating standardized effect sizes and testing null hypothesis. The randomization algorithms are based on classical algorithms for matrices (Gotelli 2000, <doi:10.2307/177478>) implemented for raster data.
Sensitivity analysis for case-control studies in which some cases may meet a more narrow definition of being a case compared to other cases which only meet a broad definition. The sensitivity analyses are described in Small, Cheng, Halloran and Rosenbaum (2013, "Case Definition and Sensitivity Analysis", Journal of the American Statistical Association, 1457-1468). The functions sens.analysis.mh and sens.analysis.aberrant.rank provide sensitivity analyses based on the Mantel-Haenszel test statistic and aberrant rank test statistic as described in Rosenbaum (1991, "Sensitivity Analysis for Matched Case Control Studies", Biometrics); see also Section 1 of Small et al. The function adaptive.case.test provides adaptive inferences as described in Section 5 of Small et al. The function adaptive.noether.brown provides a sensitivity analysis for a matched cohort study based on an adaptive test. The other functions in the package are internal functions.