Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows to map species richness and endemism based on stacked species distribution models (SSDM). Individuals SDMs can be created using a single or multiple algorithms (ensemble SDMs). For each species, an SDM can yield a habitat suitability map, a binary map, a between-algorithm variance map, and can assess variable importance, algorithm accuracy, and between- algorithm correlation. Methods to stack individual SDMs include summing individual probabilities and thresholding then summing. Thresholding can be based on a specific evaluation metric or by drawing repeatedly from a Bernoulli distribution. The SSDM package also provides a user-friendly interface.
Provide estimation and data generation tools for the skew-unit family discussed based on Mukhopadhyay and Brani (1995) <doi:10.2307/2348710>. The family contains extensions for popular distributions such as the ArcSin discussed in Arnold and Groeneveld (1980) <doi:10.1080/01621459.1980.10477449>, triangular, U-quadratic and Johnson-SB proposed in Cortina-Borja (2006) <doi:10.1111/j.1467-985X.2006.00446_12.x> distributions, among others.
Import classification results from the RDP Classifier (Ribosomal Database Project), USEARCH sintax, vsearch sintax and the QIIME2 (Quantitative Insights into Microbial Ecology) classifiers into phyloseq tax_table objects.
Implementation of the direct Monte Carlo approach of Zellner and Ando (2010) <doi:10.1016/j.jeconom.2010.04.005> to sample from posterior of Seemingly Unrelated Regression (SUR) models. In addition, a Gibbs sampler is implemented that allows the user to analyze SUR models using the power prior.
This package produces tables with descriptive statistics for continuous, categorical and dichotomous variables. It is largely based on the package gtsummary'; Sjoberg DD et al. (2021) <doi:10.32614/RJ-2021-053>.
An overall test for seasonality of a given time series in addition to a set of individual seasonality tests as described by Ollech and Webel (forthcoming): An overall seasonality test. Bundesbank Discussion Paper.
This package provides a simple, one-command package which runs an interactive dashboard capable of common visualizations for single cell RNA-seq. SeuratExplorer requires a processed Seurat object, which is saved as rds or qs2 file.
This package performs cluster analysis of mixed-type data using Spectral Clustering, see F. Mbuga and, C. Tortora (2022) <doi:10.3390/stats5010001>.
This package provides methods for the computation of surface/image texture indices using a geostatistical based approach (Trevisani et al. (2023) <doi:10.1016/j.geomorph.2023.108838>). It provides various functions for the computation of surface texture indices (e.g., omnidirectional roughness and roughness anisotropy), including the ones based on the robust MAD estimator. The kernels included in the software permit also to calculate the surface/image texture indices directly from the input surface (i.e., without de-trending) using increments of order 2. It also provides the new radial roughness index (RRI), representing the improvement of the popular topographic roughness index (TRI). The framework can be easily extended with ad-hoc surface/image texture indices.
This package provides tools to design experiments, compute Sobol sensitivity indices, and summarise stochastic responses inspired by the strategy described by Zhu and Sudret (2021) <doi:10.1016/j.ress.2021.107815>. Includes helpers to optimise toy models implemented in C++, visualise indices with uncertainty quantification, and derive reliability-oriented sensitivity measures based on failure probabilities. It is further detailed in Logosha, Maumy and Bertrand (2022) <doi:10.1063/5.0246026> and (2023) <doi:10.1063/5.0246024> or in Bertrand, Logosha and Maumy (2024) <https://hal.science/hal-05371803>, <https://hal.science/hal-05371795> and <https://hal.science/hal-05371798>.
An enterprise-targeted scalable and customizable shiny module providing an easy way to incorporate free-form note taking or discussion boards into applications. The package includes a shiny module that can be included in any shiny application to create a panel containing searchable, editable text broken down by section headers. Can be used with a local SQLite database, or a compatible remote database of choice.
Enforcement of field types in lists. A drop-in tool to allow for dynamic input data that might be questionably parsed or cast to be coerced into the specific desired format in a reasonably performant manner.
Diagnostics for fixed effects linear and general linear regression models fitted with survey data. Extensions of standard diagnostics to complex survey data are included: standardized residuals, leverages, Cook's D, dfbetas, dffits, condition indexes, and variance inflation factors as found in Li and Valliant (Surv. Meth., 2009, 35(1), pp. 15-24; Jnl. of Off. Stat., 2011, 27(1), pp. 99-119; Jnl. of Off. Stat., 2015, 31(1), pp. 61-75); Liao and Valliant (Surv. Meth., 2012, 38(1), pp. 53-62; Surv. Meth., 2012, 38(2), pp. 189-202). Variance inflation factors and condition indexes are also computed for some general linear models as described in Liao (U. Maryland thesis, 2010).
Enables reading and writing binary and ASCII data to RS232/RS422/RS485 or any other virtual serial interface of the computer.
Offers a suite of functions for converting to and from (atomic) vectors, matrices, data.frames, and (3D+) arrays as well as lists of these objects. It is an alternative to the base R as.<str>.<method>() functions (e.g., as.data.frame.array()) that provides more useful and/or flexible restructuring of R objects. To do so, it only works with common structuring of R objects (e.g., data.frames with only atomic vector columns).
This package provides a set of functions for querying and parsing data from Solr (<https://solr.apache.org/>) endpoints (local and remote), including search, faceting', highlighting', stats', and more like this'. In addition, some functionality is included for creating, deleting, and updating documents in a Solr database'.
This package provides a collection of procedures for analysing, visualising, and managing single-case data. These include regression models (multilevel, multivariate, bayesian), between case standardised mean difference, overlap indices ('PND', PEM', PAND', PET', tau-u', IRD', baseline corrected tau', CDC'), and randomization tests. Data preparation functions support outlier detection, handling missing values, scaling, and custom transformations. An export function helps to generate html, word, and latex tables in a publication friendly style. A shiny app allows to use scan in a graphical user interface. More details can be found in the online book Analyzing single-case data with R and scan', Juergen Wilbert (2025) <https://jazznbass.github.io/scan-Book/>.
Computation of sparse portfolios for financial index tracking, i.e., joint selection of a subset of the assets that compose the index and computation of their relative weights (capital allocation). The level of sparsity of the portfolios, i.e., the number of selected assets, is controlled through a regularization parameter. Different tracking measures are available, namely, the empirical tracking error (ETE), downside risk (DR), Huber empirical tracking error (HETE), and Huber downside risk (HDR). See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Feng, and D. P. Palomar, "Sparse Portfolios for High-Dimensional Financial Index Tracking," IEEE Trans. on Signal Processing, vol. 66, no. 1, pp. 155-170, Jan. 2018. <doi:10.1109/TSP.2017.2762286>.
Implementation of hybrid STL decomposition based time delay neural network model for univariate time series forecasting. For method details see Jha G K, Sinha, K (2014). <doi:10.1007/s00521-012-1264-z>, Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
Fast enrichment analysis for locally correlated statistics via circular permutations. The analysis can be performed at multiple significance thresholds for both primary and auxiliary data sets with efficient correction for multiple testing.
Collection of functions to connect the structure of the data with the information on the samples. Three types of associations are covered: 1. linear model of principal components. 2. hierarchical clustering analysis. 3. distribution of features-sample annotation associations. Additionally, the inter-relation between sample annotations can be analyzed. Simple methods are provided for the correction of batch effects and removal of principal components.
This package provides a powerful and flexible tool for visualizing proportional data across spatially resolved contexts. By combining the concepts of scatter plots and stacked bar charts, scatterbar allows users to create scattered bar chart plots, which effectively display the proportions of different categories at each (x, y) location. This visualization is particularly useful for applications where understanding the distribution of categories across spatial coordinates is essential. This package features automatic determination of optimal scaling factors based on data, customizable scaling and padding options for both x and y axes, flexibility to specify custom colors for each category, options to customize the legend title, and integration with ggplot2 for robust and high-quality visualizations. For more details, see Velazquez et al. (2024) <doi:10.1101/2024.08.14.606810>.
Based on the illness-death model a large number of clinical trials with oncology endpoints progression-free survival (PFS) and overall survival (OS) can be simulated, see Meller, Beyersmann and Rufibach (2019) <doi:10.1002/sim.8295>. The simulation set-up allows for random and event-driven censoring, an arbitrary number of treatment arms, staggered study entry and drop-out. Exponentially, Weibull and piecewise exponentially distributed survival times can be generated. The correlation between PFS and OS can be calculated.
Latent space models for multivariate networks (multiplex) estimated via MCMC algorithm. See D Angelo et al. (2018) <arXiv:1803.07166> and D Angelo et al. (2018) <arXiv:1807.03874>.