Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform meta-analysis of single-case experiments, including calculating various effect size measures (SMD, PND, PEM and NAP) and probability combining (additive and multiplicative method), as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>.
Enhance the bookmarkable state feature of shiny with additional customization such as storage location and storage repositories leveraging the pins package.
Identifying cell types based on expression profiles is a pillar of single cell analysis. scROSHI identifies cell types based on expression profiles of single cell analysis by utilizing previously obtained cell type specific gene sets. It takes into account the hierarchical nature of cell type relationship and does not require training or annotated data. A detailed description of the method can be found at: Prummer, Bertolini, Bosshard, Barkmann, Yates, Boeva, The Tumor Profiler Consortium, Stekhoven, and Singer (2022) <doi:10.1101/2022.04.05.487176>.
This package provides functions to parse and analyze logs generated by ShinyProxy containers. It extracts metadata from log file names, reads log contents, and computes summary statistics (such as the total number of lines and lines containing error messages), facilitating efficient monitoring and debugging of ShinyProxy deployments.
In base R, object attributes are lost when objects are modified by common data operations such as subset, filter, slice, append, extract etc. This packages allows objects to be marked as sticky and have attributes persisted during these operations or when inserted into or extracted from list-like or table-like objects.
An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.
Regression-based ranking of pathogen strains with respect to their contributions to natural epidemics, using demographic and genetic data sampled in the curse of the epidemics. This package also includes the GMCPIC test.
This package provides functions that compute the spatial covariance matrix for the matern and power classes of spatial models, for data that arise on rectangular units. This code can also be used for the change of support problem and for spatial data that arise on irregularly shaped regions like counties or zipcodes by laying a fine grid of rectangles and aggregating the integrals in a form of Riemann integration.
This package provides a combined slider and numeric input for usage in a Shiny app. The slider and the numeric input are linked together: each one is updated when the other one changes. Many styling properties are customizable (e.g. colors and size).
Retrieves the most important data on parliamentary activities of the Swiss Federal Assembly via an open, machine-readable interface (see <https://ws.parlament.ch/odata.svc/>).
Allows to retrieve time series of all indicators available in the Bank of Mexico's Economic Information System (<http://www.banxico.org.mx/SieInternet/>).
Spatial versions of Regression Discontinuity Designs (RDDs) are becoming increasingly popular as tools for causal inference. However, conducting state-of-the-art analyses often involves tedious and time-consuming steps. This package offers comprehensive functionalities for executing all required spatial and econometric tasks in a streamlined manner. Moreover, it equips researchers with tools for performing essential placebo and balancing checks comprehensively. The fact that researchers do not have to rely on APIs of external GIS software ensures replicability and raises the standard for spatial RDDs.
Data processing and visualizations for rodent vocalizations exported from DeepSqueak'. These functions are compatible with the SqueakR Shiny Dashboard, which can be used to visualize experimental results and analyses.
Computationally efficient tools for high dimensional predictive modeling (regression and classification). SAM is short for sparse additive modeling, and adopts the computationally efficient basis spline technique. We solve the optimization problems by various computational algorithms including the block coordinate descent algorithm, fast iterative soft-thresholding algorithm, and newton method. The computation is further accelerated by warm-start and active-set tricks.
Sensitivity analysis in unmatched observational studies, with or without strata. The main functions are sen2sample() and senstrat(). See Rosenbaum, P. R. and Krieger, A. M. (1990), JASA, 85, 493-498, <doi:10.1080/01621459.1990.10476226> and Gastwirth, Krieger and Rosenbaum (2000), JRSS-B, 62, 545รข 555 <doi:10.1111/1467-9868.00249> .
The goal of SAFEPG is to predict climate-related extreme losses by fitting a frequency-severity model. It improves predictive performance by introducing a sign-aligned regularization term, which ensures consistent signs for the coefficients across the frequency and severity components. This enhancement not only increases model accuracy but also enhances its interpretability, making it more suitable for practical applications in risk assessment.
This package provides diagnostic tests for assessing the informativeness of survey weights in regression models. Implements difference-in-coefficients tests (Hausman 1978 <doi:10.2307/1913827>; Pfeffermann 1993 <doi:10.2307/1403631>), weight-association tests (DuMouchel and Duncan 1983 <doi:10.2307/2288185>; Pfeffermann and Sverchkov 1999 <https://www.jstor.org/stable/25051118>; Pfeffermann and Sverchkov 2003 <ISBN:9780470845672>; Wu and Fuller 2005 <https://www.jstor.org/stable/27590461>), estimating equations tests (Pfeffermann and Sverchkov 2003 <ISBN:9780470845672>), and non-parametric permutation tests. Includes simulation utilities replicating Wang et al. (2023 <doi:10.1111/insr.12509>) and extensions.
Implementation of the structural model for variances in order to detect differentially expressed genes from gene expression data.
An enterprise-targeted scalable and customizable shiny module providing an easy way to incorporate free-form note taking or discussion boards into applications. The package includes a shiny module that can be included in any shiny application to create a panel containing searchable, editable text broken down by section headers. Can be used with a local SQLite database, or a compatible remote database of choice.
Data simulator including genotype, phenotype, pedigree, selection and reproduction in R. It simulates most of reproduction process of animals or plants and provides data for GS (Genomic Selection), GWAS (Genome-Wide Association Study), and Breeding. For ADI model, please see Kao C and Zeng Z (2002) <doi:10.1093/genetics/160.3.1243>. For build.cov, please see B. D. Ripley (1987) <ISBN:9780470009604>.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
Implementation of a shiny app to easily compare supervised machine learning model performances. You provide the data and configure each model parameter directly on the shiny app. Different supervised learning algorithms can be tested either on Spark or H2O frameworks to suit your regression and classification tasks. Implementation of available machine learning models on R has been done by Lantz (2013, ISBN:9781782162148).
Data visualization tours animates linear projection of multivariate data as its basis (ie. orientation) changes. The spinifex packages generates paths for manual tours by manipulating the contribution of a single variable at a time Cook & Buja (1997) <doi:10.1080/10618600.1997.10474754>. Other types of tours, such as grand (random walk) and guided (optimizing some objective function) are available in the tourr package Wickham et al. <doi:10.18637/jss.v040.i02>. spinifex builds on tourr and can render tours with gganimate and plotly graphics, and allows for exporting as an .html widget and as an .gif, respectively. This work is fully discussed in Spyrison & Cook (2020) <doi:10.32614/RJ-2020-027>.
Models the nonnegative entries of a rectangular adjacency matrix using a sparse latent position model, as illustrated in Rastelli, R. (2018) "The Sparse Latent Position Model for nonnegative weighted networks" <arXiv:1808.09262>.