Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides R bindings for the Stencila Schema <https://schema.stenci.la>. This package is primarily aimed at R developers wanting to programmatically generate, or modify, executable documents.
This package provides functions to produce a fully fledged geo-spatial object extent as a SpatialPolygonsDataFrame'. Also included are functions to generate polygons from raster data using quadmesh techniques, a round number buffered extent, and general spatial-extent and raster-like extent helpers missing from the originating packages. Some latitude-based tools for polar maps are included.
This package provides tools for designing spatially explicit capture-recapture studies of animal populations. This is primarily a simulation manager for package secr'. Extensions in version 2.5.0 include costing and evaluation of detector spacing.
On discrete data spectral analysis is performed by Fourier and Hilbert transforms as well as with model based analysis called Lomb-Scargle method. Fragmented and irregularly spaced data can be processed in almost all methods. Both, FFT as well as LOMB methods take multivariate data and return standardized PSD. For didactic reasons an analytical approach for deconvolution of noise spectra and sampling function is provided. A user friendly interface helps to interpret the results.
Classical methods for combining summary data from genome-wide association studies (GWAS) only use marginal genetic effects and power can be compromised in the presence of heterogeneity. subgxe is a R package that implements p-value assisted subset testing for association (pASTA), a method developed by Yu et al. (2019) <doi:10.1159/000496867>. pASTA generalizes association analysis based on subsets by incorporating gene-environment interactions into the testing procedure.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
Enables small area estimation (SAE) of health and demographic indicators in low- and middle-income countries (LMICs). It powers an R shiny application for generating subnational estimates and prevalence maps of 150+ binary indicators from Demographic and Health Surveys (DHS). It builds on the SAE analysis workflow from the surveyPrev package. For documentation, visit <https://sae4health.stat.uw.edu/>. Methodological details can be found at Wu et al. (2025) <doi:10.48550/arXiv.2505.01467>.
Extended Susceptible-Exposed-Infected-Recovery Model for handling high false negative rate and symptom based administration of diagnostic tests. <doi:10.1101/2020.09.24.20200238>.
Implementation of small area estimation using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error. The rjags package is employed to obtain parameter estimates. For the references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Lohr (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).
Algorithms of nonparametric sequential test and online change-point detection for streams of univariate (sub-)Gaussian, binary, and bounded random variables, introduced in following publications - Shin et al. (2024) <doi:10.48550/arXiv.2203.03532>, Shin et al. (2021) <doi:10.48550/arXiv.2010.08082>.
We provide functions for estimation and inference of nonlinear and non-stationary time series regression using the sieve methods and bootstrapping procedure.
Fit and selects point pattern models based on minimum contrast, AIC and and goodness of fit.
Algorithms to compute spherical k-means partitions. Features several methods, including a genetic and a fixed-point algorithm and an interface to the CLUTO vcluster program.
Improves the interpretation of the Standardized Precipitation Index under changing climate conditions. The package uses the nonstationary approach proposed in Blain et al. (2022) <doi:10.1002/joc.7550> to detect trends in rainfall quantities and to quantify the effect of such trends on the probability of a drought event occurring.
This package provides a ggplot2 theme and colour palettes to create accessible data visualisations in the Scottish Government.
Given bincount data from single-cell copy number profiling (segmented or unsegmented), estimates ploidy, and uses the ploidy estimate to scale the data to absolute copy numbers. Uses the modular quantogram proposed by Kendall (1986) <doi:10.1002/0471667196.ess2129.pub2>, modified by weighting segments according to confidence, and quantifying confidence in the estimate using a theoretical quantogram. Includes optional fused-lasso segmentation with the algorithm in Johnson (2013) <doi:10.1080/10618600.2012.681238>, using the implementation from glmgen by Arnold, Sadhanala, and Tibshirani.
Enables the creation of Chain Event Graphs over spatial areas, with an optional Shiny user interface. Allows users to fully customise both the structure and underlying model of the Chain Event Graph, offering a high degree of flexibility for tailored analyses. For more details on Chain Event Graphs, see Freeman, G., & Smith, J. Q. (2011) <doi:10.1016/j.jmva.2011.03.008>, Collazo R. A., Görgen C. and Smith J. Q. (2018, ISBN:9781498729604) and Barclay, L. M., Hutton, J. L., & Smith, J. Q. (2014) <doi:10.1214/13-BA843>.
Sampling procedures from the book Stichproben - Methoden und praktische Umsetzung mit R by Goeran Kauermann and Helmut Kuechenhoff (2010).
This package implements the SE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. The SE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the sum of standardized differences between the expected values or in other words: the sum of effect sizes (SE) of all components of the two multivariate samples. The test is an asymptotically valid test for normally distributed data (see Hoffelder et al.,2015). The function SE.EQ() implements the SE-test for equivalence according to Hoffelder et al. (2015). The function SE.EQ.dissolution.profiles() implements a variant of the SE-test for equivalence for similarity analyses of dissolution profiles as mentioned in Suarez-Sharp et al.(2020) <DOI:10.1208/s12248-020-00458-9>). The equivalence margin used in SE.EQ.dissolution.profiles() is analogically defined as for the T2EQ approach according to Hoffelder (2019) <DOI:10.1002/bimj.201700257>) by means of a systematic shift in location of 10 [\% of label claim] of both dissolution profile populations. SE.EQ.dissolution.profiles() checks whether the weighted mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The weights are built up by the inverse variances.
Collect your data on digital marketing campaigns from Shopify Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Data sets from Ramsey, F.L. and Schafer, D.W. (2013), "The Statistical Sleuth: A Course in Methods of Data Analysis (3rd ed)", Cengage Learning.
Consolidated data simulation, sample size calculation and analysis functions for several snSMART (small sample sequential, multiple assignment, randomized trial) designs under one library. See Wei, B., Braun, T.M., Tamura, R.N. and Kidwell, K.M. "A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs)." (2018) Statistics in medicine, 37(26), pp.3723-3732 <doi:10.1002/sim.7900>.
This package implements a suite of semiparametric and nonparametric kernel-smoothed estimation and testing procedures for continuous mark-specific stratified hazard ratio (treatment/placebo) models in a randomized treatment efficacy trial with a time-to-event endpoint. Semiparametric methods, allowing multivariate marks, are described in Juraska M and Gilbert PB (2013), Mark-specific hazard ratio model with multivariate continuous marks: an application to vaccine efficacy. Biometrics 69(2):328-337 <doi:10.1111/biom.12016>, and in Juraska M and Gilbert PB (2016), Mark-specific hazard ratio model with missing multivariate marks. Lifetime Data Analysis 22(4):606-25 <doi:10.1007/s10985-015-9353-9>. Nonparametric kernel-smoothed methods, allowing univariate marks only, are described in Sun Y and Gilbert PB (2012), Estimation of stratified markâ specific proportional hazards models with missing marks. Scandinavian Journal of Statistics
This package provides a step-down procedure for controlling the False Discovery Proportion (FDP) in a competition-based setup, implementing Dong et al. (2020) <arXiv:2011.11939>. Such setups include target-decoy competition (TDC) in computational mass spectrometry and the knockoff construction in linear regression.