Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sensitivity analysis for case-control studies in which some cases may meet a more narrow definition of being a case compared to other cases which only meet a broad definition. The sensitivity analyses are described in Small, Cheng, Halloran and Rosenbaum (2013, "Case Definition and Sensitivity Analysis", Journal of the American Statistical Association, 1457-1468). The functions sens.analysis.mh and sens.analysis.aberrant.rank provide sensitivity analyses based on the Mantel-Haenszel test statistic and aberrant rank test statistic as described in Rosenbaum (1991, "Sensitivity Analysis for Matched Case Control Studies", Biometrics); see also Section 1 of Small et al. The function adaptive.case.test provides adaptive inferences as described in Section 5 of Small et al. The function adaptive.noether.brown provides a sensitivity analysis for a matched cohort study based on an adaptive test. The other functions in the package are internal functions.
This package provides functions for tabulating and summarizing categorical, multiple response, ordinal, and continuous variables in R data frames. Makes it easy to create clear, structured summary tables, so you spend less time wrangling data and more time interpreting it.
Perform common dendrometry operations such as inventory preparing, and inventory data analysis.
Run complex native scripts with a single command, similar to system commands.
Fitting and plotting parametric or non-parametric size-biased non-negative distributions, with optional covariates if parametric. Rowcliffe, M. et al. (2016) <doi:10.1002/rse2.17>.
Encapsulates a number of spatially balanced sampling algorithms, namely, Balanced Acceptance Sampling (equal, unequal, seed point, panels), Halton frames (for discretizing a continuous resource), Halton Iterative Partitioning (equal probability) and Simple Random Sampling. Robertson, B. L., Brown, J. A., McDonald, T. and Jaksons, P. (2013) <doi:10.1111/biom.12059>. Robertson, B. L., McDonald, T., Price, C. J. and Brown, J. A. (2017) <doi:10.1016/j.spl.2017.05.004>. Robertson, B. L., McDonald, T., Price, C. J. and Brown, J. A. (2018) <doi:10.1007/s10651-018-0406-6>. Robertson, B. L., van Dam-Bates, P. and Gansell, O. (2021a) <doi:10.1007/s10651-020-00481-1>. Robertson, B. L., Davies, P., Gansell, O., van Dam-Bates, P., McDonald, T. (2025) <doi:10.1111/anzs.12435>.
Combine topic modeling and sentiment analysis to identify individual students gaps, and highlight their strengths and weaknesses across predefined competency domains and professional activities.
Conduct latent trajectory class analysis with longitudinal data. Our method supports longitudinal continuous, binary and count data. For more methodological details, please refer to Hart, K.R., Fei, T. and Hanfelt, J.J. (2020), Scalable and robust latent trajectory class analysis using artificial likelihood. Biometrics <doi:10.1111/biom.13366>.
Simulate a virtual population of subjects that has demographic distributions (height, weight, and BMI) and correlations (height and weight), by sex and age, which mimic those reported in real-world anthropometric growth charts (CDC, WHO, or Fenton).
This package provides a method that inherits the standard gene set variation analysis (GSVA) method and also provides the option to use summary statistics from any analysis (disease vs healthy, lesional side vs nonlesional side, etc..) input to define the direction of gene sets used for directional gene set score calculation for a given disease. Note to use this package, GSVA(>= 1.52.1) is needed to pre-installed. Hanzelmann, S., Castelo, R., and Guinney, J. (2013) <doi:10.1186/1471-2105-14-7>.
Propose an area-level, non-parametric regression estimator based on Nadaraya-Watson kernel on small area mean. Adopt a two-stage estimation approach proposed by Prasad and Rao (1990). Mean Squared Error (MSE) estimators are not readily available, so resampling method that called bootstrap is applied. This package are based on the model proposed in Two stage non-parametric approach for small area estimation by Pushpal Mukhopadhyay and Tapabrata Maiti(2004) <http://www.asasrms.org/Proceedings/y2004/files/Jsm2004-000737.pdf>.
Generate simulated datasets from an initial underlying distribution and apply transformations to obtain realistic data. Implements the NORTA (Normal-to-anything) approach from Cario and Nelson (1997) and other data generating mechanisms. Simple network visualization tools are provided to facilitate communicating the simulation setup.
Allows to connect selectizeInputs widgets as filters to a reactable table. As known from spreadsheet applications, column filters are interdependent, so each filter only shows the values that are really available at the moment based on the current selection in other filters. Filter values currently not available (and also those being available) can be shown via popovers or tooltips.
Code for describing and manipulating scuba diving profiles (depth-time curves) and decompression models, for calculating the predictions of decompression models, for calculating maximum no-decompression time and decompression tables, and for performing mixed gas calculations.
This package provides confidence intervals in least-squares regressions when the variable of interest has a shift-share structure, and in instrumental variables regressions when the instrument has a shift-share structure. The confidence intervals implement the AKM and AKM0 methods developed in Adão, Kolesár, and Morales (2019) <doi:10.1093/qje/qjz025>.
This package contains functions for statistical data analysis based on spatially-clustered techniques. The package allows estimating the spatially-clustered spatial regression models presented in Cerqueti, Maranzano \& Mattera (2024), "Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe", arXiv preprint 2407.15874 <doi:10.48550/arXiv.2407.15874>. Specifically, the current release allows the estimation of the spatially-clustered linear regression model (SCLM), the spatially-clustered spatial autoregressive model (SCSAR), the spatially-clustered spatial Durbin model (SCSEM), and the spatially-clustered linear regression model with spatially-lagged exogenous covariates (SCSLX). From release 0.0.2, the library contains functions to estimate spatial clustering based on Adiajacent Matrix K-Means (AMKM) as described in Zhou, Liu \& Zhu (2019), "Weighted adjacent matrix for K-means clustering", Multimedia Tools and Applications, 78 (23) <doi:10.1007/s11042-019-08009-x>.
The sparse vector field consensus (SparseVFC) algorithm (Ma et al., 2013 <doi:10.1016/j.patcog.2013.05.017>) for robust vector field learning. Largely translated from the Matlab functions in <https://github.com/jiayi-ma/VFC>.
Econometric estimation of simultaneous systems of linear and nonlinear equations using Ordinary Least Squares (OLS), Weighted Least Squares (WLS), Seemingly Unrelated Regressions (SUR), Two-Stage Least Squares (2SLS), Weighted Two-Stage Least Squares (W2SLS), and Three-Stage Least Squares (3SLS) as suggested, e.g., by Zellner (1962) <doi:10.2307/2281644>, Zellner and Theil (1962) <doi:10.2307/1911287>, and Schmidt (1990) <doi:10.1016/0304-4076(90)90127-F>.
M-estimator for threshold and non-threshold spatial dynamic panel data model. Yang, Z (2018) <doi:10.1016/j.jeconom.2017.08.019>. Wu, J., Matsuda, Y (2021) <doi:10.1007/s43071-021-00008-1>.
This package provides comprehensive tools for the implementation of Structural Latent Class Models (SLCM), including Latent Transition Analysis (LTA; Linda M. Collins and Stephanie T. Lanza, 2009) <doi:10.1002/9780470567333>, Latent Class Profile Analysis (LCPA; Hwan Chung et al., 2010) <doi:10.1111/j.1467-985x.2010.00674.x>, and Joint Latent Class Analysis (JLCA; Saebom Jeon et al., 2017) <doi:10.1080/10705511.2017.1340844>, and any other extended models involving multiple latent class variables.
This package implements the SVM-Maj algorithm to train data with support vector machine <doi:10.1007/s11634-008-0020-9>. This algorithm uses two efficient updates, one for linear kernel and one for the nonlinear kernel.
This package provides a collection of functions to test and estimate Seemingly Unrelated Regression (usually called SUR) models, with spatial structure, by maximum likelihood and three-stage least squares. The package estimates the most common spatial specifications, that is, SUR with Spatial Lag of X regressors (called SUR-SLX), SUR with Spatial Lag Model (called SUR-SLM), SUR with Spatial Error Model (called SUR-SEM), SUR with Spatial Durbin Model (called SUR-SDM), SUR with Spatial Durbin Error Model (called SUR-SDEM), SUR with Spatial Autoregressive terms and Spatial Autoregressive Disturbances (called SUR-SARAR), SUR-SARAR with Spatial Lag of X regressors (called SUR-GNM) and SUR with Spatially Independent Model (called SUR-SIM). The methodology of these models can be found in next references Minguez, R., Lopez, F.A., and Mur, J. (2022) <doi:10.18637/jss.v104.i11> Mur, J., Lopez, F.A., and Herrera, M. (2010) <doi:10.1080/17421772.2010.516443> Lopez, F.A., Mur, J., and Angulo, A. (2014) <doi:10.1007/s00168-014-0624-2>.
Simple class to hold contents of a SMET file as specified in Bavay (2021) <https://code.wsl.ch/snow-models/meteoio/-/blob/master/doc/SMET_specifications.pdf>. There numerical meteorological measurements are all based on MKS (SI) units and timestamp is standardized to UTC time.
This package provides a simple method to display and characterise the multidimensional ecological niche of a species. The method also estimates the optimums and amplitudes along each niche dimension. Give also an estimation of the degree of niche overlapping between species. See Kleparski and Beaugrand (2022) <doi:10.1002/ece3.8830> for further details.