Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to run and assist four different similarity measures. The similarity measures included are: longest common subsequence (LCSS), Frechet distance, edit distance and dynamic time warping (DTW). Each of these similarity measures can be calculated from two n-dimensional trajectories, both in matrix form.
This package provides an application that acts as a GUI for the stm text analysis package.
By calling the SimpleTex <https://simpletex.cn/> open API implements text and mathematical formula recognition on the image, and the output formula can be used directly with Markdown and LaTeX'.
Detection of anomalous space-time clusters using the scan statistics methodology. Focuses on prospective surveillance of data streams, scanning for clusters with ongoing anomalies. Hypothesis testing is made possible by Monte Carlo simulation. Allévius (2018) <doi:10.21105/joss.00515>.
Analysis of field trial experiments by modelling spatial trends using two-dimensional Penalised spline (P-spline) models.
This package implements a set of distribution modeling methods that are suited to species with small sample sizes (e.g., poorly sampled species or rare species). While these methods can also be used on well-sampled taxa, they are united by the fact that they can be utilized with relatively few data points. More details on the currently implemented methodologies can be found in Drake and Richards (2018) <doi:10.1002/ecs2.2373>, Drake (2015) <doi:10.1098/rsif.2015.0086>, and Drake (2014) <doi:10.1890/ES13-00202.1>.
This package implements Multivariate ANalysis Of VAriance (MANOVA) parameters inference and test with regularization for semicontinuous high-dimensional data. The method can be applied also in presence of low-dimensional data. The p-value can be obtained through asymptotic distribution or using a permutation procedure. The package gives also the possibility to simulate this type of data. Method is described in Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054. DOI <doi:10.1002/bimj.70054>, arXiv DOI <doi:10.48550/arXiv.2401.04036>.
This package provides a complete suite of tools for interacting with the Survey Solutions GraphQL API <https://demo.mysurvey.solutions/graphql/>. This package encompasses all currently available queries and mutations, including the latest features for map uploads. It is built on the modern httr2 package, offering a streamlined and efficient interface without relying on external GraphQL client packages. In addition to core API functionalities, the package includes a range of helper functions designed to facilitate the use of available query filters.
Formulas for calculating sound velocity, water pressure, depth, density, absorption and sonar equations.
Collection of shiny application styling that are the based on the GOV.UK Design System. See <https://design-system.service.gov.uk/components/> for details.
I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves.
This package provides tools for processing and evaluating seasonal weather forecasts, with an emphasis on tercile forecasts. We follow the World Meteorological Organization's "Guidance on Verification of Operational Seasonal Climate Forecasts", S.J.Mason (2018, ISBN: 978-92-63-11220-0, URL: <https://library.wmo.int/idurl/4/56227>). The development was supported by the European Unionâ s Horizon 2020 research and innovation programme under grant agreement no. 869730 (CONFER). A comprehensive online tutorial is available at <https://seasonalforecastingengine.github.io/SeaValDoc/>.
This package provides historical datasets related to John Snow's 1854 cholera outbreak study in London. Includes data on cholera cases, water pump locations, and the street layout, enabling analysis and visualisation of the outbreak.
This package provides functions for obtaining p-values (for hypothesis tests), confidence intervals, and multivariate confidence sets. In particular, the method is compatible with differentially private dataset, as long as the privacy mechanism is known. For more details, see Awan and Wang (2024), "Simulation-based, Finite-sample Inference for Privatized Data", <doi:10.48550/arXiv.2303.05328>.
Simulation of event histories with possibly non-linear baseline hazard rate functions, non-linear (time-varying) covariate effect functions, and dependencies on the past of the history. Random generation of event histories is performed using inversion sampling on the cumulative all-cause hazard rate functions.
This package provides functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.
An interactive document on the topic of basic statistical analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://jarvisatharva.shinyapps.io/StatisticsPrimer/>.
Computes the optimal alignment of two character sequences. Visualizes the result of the alignment in a matrix plot. Needleman, Saul B.; Wunsch, Christian D. (1970) "A general method applicable to the search for similarities in the amino acid sequence of two proteins" <doi:10.1016/0022-2836(70)90057-4>.
This package implements sparse generalized factor models (sparseGFM) for dimension reduction and variable selection in high-dimensional data with automatic adaptation to weak factor scenarios. The package supports multiple data types (continuous, count, binary) through generalized linear model frameworks and handles missing values automatically. It provides 12 different penalty functions including Least Absolute Shrinkage and Selection Operator (Lasso), adaptive Lasso, Smoothly Clipped Absolute Deviation (SCAD), Minimax Concave Penalty (MCP), group Lasso, and their adaptive versions for inducing row-wise sparsity in factor loadings. Key features include cross-validation for regularization parameter selection using Sparsity Information Criterion (SIC), automatic determination of the number of factors via multiple information criteria, and specialized algorithms for row-sparse loading structures. The methodology employs alternating minimization with Singular Value Decomposition (SVD)-based identifiability constraints and is particularly effective for high-dimensional applications in genomics, economics, and social sciences where interpretable sparse dimension reduction is crucial. For penalty functions, see Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, Fan and Li (2001) <doi:10.1198/016214501753382273>, and Zhang (2010) <doi:10.1214/09-AOS729>.
Fast Multiplication and Marginalization of Sparse Tables <doi:10.18637/jss.v111.i02>.
Includes all the datasets of Sampling: Design and Analysis (3rd edition by Sharon Lohr) in R format and additional functions for analyzing and graphing probability samples.
Calculates parameters of the seawater carbonate system and assists the design of ocean acidification perturbation experiments.
An analytic framework for the calculation of norm- and criterion-referenced academic growth estimates using large scale, longitudinal education assessment data as developed in Betebenner (2009) <doi:10.1111/j.1745-3992.2009.00161.x>.
Image Segmentation using Superpixels, Affinity Propagation and Kmeans Clustering. The R code is based primarily on the article "Image Segmentation using SLIC Superpixels and Affinity Propagation Clustering, Bao Zhou, International Journal of Science and Research (IJSR), 2013" <https://www.ijsr.net/archive/v4i4/SUB152869.pdf>.