Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Reference data sets of species sensitivities to compare the results of fitting species sensitivity distributions using software such as ssdtools and Burrlioz'. It consists of 17 primary data sets from four different Australian and Canadian organizations as well as five datasets from anonymous sources. It also includes a data set of the results of fitting various distributions using different software.
Settings and functions to extend the knitr SAS engine.
Download, navigate and analyse the Student-Life dataset. The Student-Life dataset contains passive and automatic sensing data from the phones of a class of 48 Dartmouth college students. It was collected over a 10 week term. Additionally, the dataset contains ecological momentary assessment results along with pre-study and post-study mental health surveys. The intended use is to assess mental health, academic performance and behavioral trends. The raw dataset and additional information is available at <https://studentlife.cs.dartmouth.edu/>.
This package provides a simulation-based tool made to help researchers to become familiar with multilevel variations, and to build up sampling designs for their study. This tool has two main objectives: First, it provides an educational tool useful for students, teachers and researchers who want to learn to use mixed-effects models. Users can experience how the mixed-effects model framework can be used to understand distinct biological phenomena by interactively exploring simulated multilevel data. Second, it offers research opportunities to those who are already familiar with mixed-effects models, as it enables the generation of data sets that users may download and use for a range of simulation-based statistical analyses such as power and sensitivity analysis of multilevel and multivariate data [Allegue, H., Araya-Ajoy, Y.G., Dingemanse, N.J., Dochtermann N.A., Garamszegi, L.Z., Nakagawa, S., Reale, D., Schielzeth, H. and Westneat, D.F. (2016) <doi: 10.1111/2041-210X.12659>].
This package provides functions to calculate some point estimators and estimate their variance under unequal probability sampling without replacement. Single and two-stage sampling designs are considered. Some approximations for the second-order inclusion probabilities (joint inclusion probabilities) are available (sample and population based). A variety of Jackknife variance estimators are implemented. Almost every function is written in C (compiled) code for faster results. The functions incorporate some performance improvements for faster results with large datasets.
Conduct asymptotic and empirical power and sample size calculations for Single-Nucleotide Polymorphism (SNP) association studies with right censored time to event outcomes.
Semiparametric empirical likelihood ratio based tests of change-point with one-change or epidemic alternatives with data-based model diagnostic are contained.
This package provides a seamless design that combines phase I dose escalation based on toxicity with phase II dose expansion and dose comparison based on efficacy.
Generate Stochastic Branching Networks ('SBNs'). Used to model the branching structure of rivers.
Computes the extended spring indices (SI-x) and false spring exposure indices (FSEI). The SI-x indices are standard indices used for analysis in spring phenology studies. In addition, the FSEI is also from research on the climatology of false springs and adjusted to include an early and late false spring exposure index. The indices include the first leaf index, first bloom index, and false spring exposure indices, along with all calculations for all functions needed to calculate each index. The main function returns all indices, but each function can also be run separately. Allstadt et al. (2015) <doi: 10.1088/1748-9326/10/10/104008> Ault et al. (2015) <doi: 10.1016/j.cageo.2015.06.015> Peterson and Abatzoglou (2014) <doi: 10.1002/2014GL059266> Schwarz et al. (2006) <doi: 10.1111/j.1365-2486.2005.01097.x> Schwarz et al. (2013) <doi: 10.1002/joc.3625>.
This package provides tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores.
This package performs the EM algorithm for regression models using Skew Scale Mixtures of Normal Distributions.
This package provides functions for dimension reduction through the seeded canonical correlation analysis are provided. A classical canonical correlation analysis (CCA) is one of useful statistical methods in multivariate data analysis, but it is limited in use due to the matrix inversion for large p small n data. To overcome this, a seeded CCA has been proposed in Im, Gang and Yoo (2015) \doi10.1002/cem.2691. The seeded CCA is a two-step procedure. The sets of variables are initially reduced by successively projecting cov(X,Y) or cov(Y,X) onto cov(X) and cov(Y), respectively, without loss of information on canonical correlation analysis, following Cook, Li and Chiaromonte (2007) \doi10.1093/biomet/asm038 and Lee and Yoo (2014) \doi10.1111/anzs.12057. Then, the canonical correlation is finalized with the initially-reduced two sets of variables.
Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.
This package provides a set of user interface components to create outstanding shiny apps <https://shiny.posit.co/>, with the power of React JavaScript <https://react.dev/>. Seamlessly support dark and light themes, customize CSS with tailwind <https://tailwindcss.com/>.
Datasets for the textbook Stat2: Modeling with Regression and ANOVA (second edition). The package also includes data for the first edition, Stat2: Building Models for a World of Data and a few functions for plotting diagnostics.
Implementation of various methods in estimation of species richness or diversity in Wang (2011)<doi:10.18637/jss.v040.i09>.
This package provides a rich set of UI components for building Shiny applications, including inputs, containers, overlays, menus, and various utilities. All components from Fluent UI (the underlying JavaScript library) are available and have usage examples in R.
Chat with large language models on your machine without internet with complete privacy via ollama', powered by R shiny interface. For more information on ollama', visit <https://ollama.com>.
Because your linear models deserve better than console output. A sleek color palette and kable styling to make your regression results look sharper than they are. Includes support for Partial Least Squares (PLS) regression via both the SVD and NIPALS algorithms, along with a unified interface for model fitting and fabulous LaTeX and console output formatting. See the package website at <https://finitesample.space/snazzier>.
This package provides functions for color-based visualization of multivariate data, i.e. colorgrams or heatmaps. Lower-level functions map numeric values to colors, display a matrix as an array of colors, and draw color keys. Higher-level plotting functions generate a bivariate histogram, a dendrogram aligned with a color-coded matrix, a triangular distance matrix, and more.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
Practitioners of Bayesian statistics often use Markov chain Monte Carlo (MCMC) samplers to sample from a posterior distribution. This package determines whether the MCMC sample is large enough to yield reliable estimates of the target distribution. In particular, this calculates a Gelman-Rubin convergence diagnostic using stable and consistent estimators of Monte Carlo variance. Additionally, this uses the connection between an MCMC sample's effective sample size and the Gelman-Rubin diagnostic to produce a threshold for terminating MCMC simulation. Finally, this informs the user whether enough samples have been collected and (if necessary) estimates the number of samples needed for a desired level of accuracy. The theory underlying these methods can be found in "Revisiting the Gelman-Rubin Diagnostic" by Vats and Knudson (2018) <arXiv:1812:09384>.
This package provides a comprehensive logging framework for R applications that provides hierarchical logging levels, database integration, and contextual logging capabilities. The package supports SQLite storage for persistent logs, provides colour-coded console output for better readability, includes parallel processing support, and implements structured error reporting with JSON formatting.