Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for statistical and multivariate analysis of surface-related data, with a focus on antimicrobial activity and omniphobicity. Designed to support materials scientists and researchers in exploring structureâ function relationships in surface-engineered materials through reproducible and interpretable workflows. For more details, see Li et al. (2021) <doi:10.1002/advs.202100368>, and Kwon et al. (2020) <doi:10.3390/polym12081826>.
This package provides tools for researchers to explicitly show that their results comply to rules for statistical disclosure control imposed by research data centers. These tools help in checking descriptive statistics and models and in calculating extreme values that are not individual data. Also included is a simple function to create log files. The methods used here are described in the "Guidelines for the checking of output based on microdata research" by Bond, Brandt, and de Wolf (2015) <https://cros.ec.europa.eu/system/files/2024-02/Output-checking-guidelines.pdf>.
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.
Compute relative or absolute population trends across space and time using predictions from models fitted to ecological population abundance data, as described in Knape (2025) <doi:10.1016/j.ecolind.2025.113435>. The package supports models fitted by mgcv or brms', and draws from posterior predictive distributions.
This package provides a set of reliable routines to ease semiparametric survival regression modeling based on Bernstein polynomials. spsurv includes proportional hazards, proportional odds and accelerated failure time frameworks for right-censored data. RV Panaro (2020) <arXiv:2003.10548>.
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
This package performs parametric synthesis of sounds with harmonic and noise components such as animal vocalizations or human voice. Also offers tools for audio manipulation and acoustic analysis, including pitch tracking, spectral analysis, audio segmentation, pitch and formant shifting, etc. Includes four interactive web apps for synthesizing and annotating audio, manually correcting pitch contours, and measuring formant frequencies. Reference: Anikin (2019) <doi:10.3758/s13428-018-1095-7>.
Applies re-sampled kernel density method to detect vote fraud. It estimates the proportion of coarse vote-shares in the observed data relative to the null hypothesis of no fraud.
Support for reading and writing files in StatDataML---an XML-based data exchange format.
Visual representations of model fit or predictive success in the form of "separation plots." See Greenhill, Brian, Michael D. Ward, and Audrey Sacks. "The separation plot: A new visual method for evaluating the fit of binary models." American Journal of Political Science 55.4 (2011): 991-1002.
This package provides a modular and extendable approach to extract (micro)saccades from gaze samples via an ensemble of methods. Although there is an agreement about a general definition of a saccade, the more specific details are harder to agree upon. Therefore, there are numerous algorithms that extract saccades based on various heuristics, which differ in the assumptions about velocity, acceleration, etc. The package uses three methods (Engbert and Kliegl (2003) <doi:10.1016/S0042-6989(03)00084-1>, Otero-Millan et al. (2014)<doi:10.1167/14.2.18>, and Nyström and Holmqvist (2010) <doi:10.3758/BRM.42.1.188>) to label individual samples and then applies a majority vote approach to identify saccades. The package includes three methods but can be extended via custom functions. It also uses a modular approach to compute velocity and acceleration from noisy samples. Finally, you can obtain methods votes per gaze sample instead of saccades.
Spatial statistical modeling and prediction for data on stream networks, including models based on in-stream distance (Ver Hoef, J.M. and Peterson, E.E., (2010) <DOI:10.1198/jasa.2009.ap08248>.) Models are created using moving average constructions. Spatial linear models, including explanatory variables, can be fit with (restricted) maximum likelihood. Mapping and other graphical functions are included.
Simulation extrapolation and inverse probability weighted generalized estimating equations method for longitudinal data with missing observations and measurement error in covariates. References: Yi, G. Y. (2008) <doi:10.1093/biostatistics/kxm054>; Cook, J. R. and Stefanski, L. A. (1994) <doi:10.1080/01621459.1994.10476871>; Little, R. J. A. and Rubin, D. B. (2002, ISBN:978-0-471-18386-0).
Identifies individuals in a social network who should be the intervention subjects for a network intervention in which you have a group of targets, a group of avoiders, and a group that is neither.
Kataegis is a localized hypermutation occurring when a region is enriched in somatic SNVs. Kataegis can result from multiple cytosine deaminations catalyzed by the AID/APOBEC family of proteins. This package contains functions to detect kataegis from SNVs in BED format. This package reports two scores per kataegic event, a hypermutation score and an APOBEC mediated kataegic score. Yousif, F. et al.; The Origins and Consequences of Localized and Global Somatic Hypermutation; Biorxiv 2018 <doi:10.1101/287839>.
The statistical tools in this package do one of four things: 1) Enhance basic statistical functions with more flexible inputs, smarter defaults, and richer, clearer, and ready-to-use output (e.g., t.test2()) 2) Produce publication-ready commonly needed figures with one line of code (e.g., plot_cdf()) 3) Implement novel analytical tools developed by the authors (e.g., twolines()) 4) Deliver niche functions of high value to the authors that are not easily available elsewhere (e.g., clear(), convert_to_sql(), resize_images()).
Calculates the slope (longitudinal gradient or steepness) of linear geographic features such as roads (for more details, see Ariza-López et al. (2019) <doi:10.1038/s41597-019-0147-x>) and rivers (for more details, see Cohen et al. (2018) <doi:10.1016/j.jhydrol.2018.06.066>). It can use local Digital Elevation Model (DEM) data or download DEM data via the ceramic package. The package also provides functions to add elevation data to linestrings and visualize elevation profiles.
The nature of working with structured query language ('SQL') scripts efficiently often requires the creation of temporary tables and there are few clean and simple R SQL execution approaches that allow you to complete this kind of work with the R environment. This package seeks to give SQL implementations in R a little love by deploying functions that allow you to deploy complex SQL scripts within a typical R workflow.
Strength training prescription using percent-based approach requires numerous computations and assumptions. STMr package allow users to estimate individual reps-max relationships, implement various progression tables, and create numerous set and rep schemes. The STMr package is originally created as a tool to help writing JovanoviÄ M. (2020) Strength Training Manual <ISBN:979-8604459898>.
Enhance the bookmarkable state feature of shiny with additional customization such as storage location and storage repositories leveraging the pins package.
This package provides functions for performing set-theoretic multi-method research, QCA for clustered data, theory evaluation, Enhanced Standard Analysis, indirect calibration, radar visualisations. Additionally it includes data to replicate the examples in the books by Oana, I.E, C. Q. Schneider, and E. Thomann. Qualitative Comparative Analysis (QCA) using R: A Beginner's Guide. Cambridge University Press and C. Q. Schneider and C. Wagemann "Set Theoretic Methods for the Social Sciences", Cambridge University Press.
The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.
Computes the entire solution paths for Support Vector Regression(SVR) with respect to the regularization parameter, lambda and epsilon in epsilon-intensive loss function, efficiently. We call each path algorithm svrpath and epspath. See Wang, G. et al (2008) <doi:10.1109/TNN.2008.2002077> for details regarding the method.
In ecology, spatial data is often represented using polygons. These polygons can represent a variety of spatial entities, such as ecological patches, animal home ranges, or gaps in the forest canopy. Researchers often need to determine if two spatial processes, represented by these polygons, are independent of each other. For instance, they might want to test if the home range of a particular animal species is influenced by the presence of a certain type of vegetation. To address this, Godoy et al. (2022) (<doi:10.1016/j.spasta.2022.100695>) developed conditional Monte Carlo tests. These tests are designed to assess spatial independence while taking into account the shape and size of the polygons.