Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.
Supporting materials for a course and book on data visualization. It contains utility functions for graphs and several sample data sets. See Healy (2019) <ISBN 978-0691181622>.
Penalized and non-penalized maximum likelihood estimation of smooth transition vector autoregressive models with various types of transition weight functions, conditional distributions, and identification methods. Constrained estimation with various types of constraints is available. Residual based model diagnostics, forecasting, simulations, counterfactual analysis, and computation of impulse response functions, generalized impulse response functions, generalized forecast error variance decompositions, as well as historical decompositions. See Heather Anderson, Farshid Vahid (1998) <doi:10.1016/S0304-4076(97)00076-6>, Helmut Lütkepohl, Aleksei Netšunajev (2017) <doi:10.1016/j.jedc.2017.09.001>, Markku Lanne, Savi Virolainen (2025) <doi:10.1016/j.jedc.2025.105162>, Savi Virolainen (2025) <doi:10.48550/arXiv.2404.19707>.
Recently, regularized variable selection has emerged as a powerful tool to identify and dissect gene-environment interactions. Nevertheless, in longitudinal studies with high dimensional genetic factors, regularization methods for GÃ E interactions have not been systematically developed. In this package, we provide the implementation of sparse group variable selection, based on both the quadratic inference function (QIF) and generalized estimating equation (GEE), to accommodate the bi-level selection for longitudinal GÃ E studies with high dimensional genomic features. Alternative methods conducting only the group or individual level selection have also been included. The core modules of the package have been developed in C++.
Offers a suite of functions for converting to and from (atomic) vectors, matrices, data.frames, and (3D+) arrays as well as lists of these objects. It is an alternative to the base R as.<str>.<method>() functions (e.g., as.data.frame.array()) that provides more useful and/or flexible restructuring of R objects. To do so, it only works with common structuring of R objects (e.g., data.frames with only atomic vector columns).
Generates artificial point patterns marked by their spatial and temporal signatures. The resulting point cloud may exhibit inherent interactions between both signatures. The simulation integrates microsimulation (Holm, E., (2017)<doi:10.1002/9781118786352.wbieg0320>) and agent-based models (Bonabeau, E., (2002)<doi:10.1073/pnas.082080899>), beginning with the configuration of movement characteristics for the specified agents (referred to as walkers') and their interactions within the simulation environment. These interactions (Quaglietta, L. and Porto, M., (2019)<doi:10.1186/s40462-019-0154-8>) result in specific spatiotemporal patterns that can be visualized, analyzed, and used for various analytical purposes. Given the growing scarcity of detailed spatiotemporal data across many domains, this package provides an alternative data source for applications in social and life sciences.
Estimates the restricted mean survival time (RMST) with the time window [0, tau], where tau is adaptively selected from the procedure, proposed by Horiguchi et al. (2018) <doi:10.1002/sim.7661>. It also estimates the RMST with the time window [tau1, tau2], where tau1 is adaptively selected from the procedure, proposed by Horiguchi et al. (2023) <doi:10.1002/sim.9662>.
The SALTSampler package facilitates Monte Carlo Markov Chain (MCMC) sampling of random variables on a simplex. A Self-Adjusting Logit Transform (SALT) proposal is used so that sampling is still efficient even in difficult cases, such as those in high dimensions or with parameters that differ by orders of magnitude. Special care is also taken to maintain accuracy even when some coordinates approach 0 or 1 numerically. Diagnostic and graphic functions are included in the package, enabling easy assessment of the convergence and mixing of the chain within the constrained space.
Computes the optimal sample size for various 2-group designs (e.g., when comparing the means of two groups assuming equal variances, unequal variances, or comparing proportions) when the aim is to maximize the rewards over the full decision procedure of a) running a trial (with the computed sample size), and b) subsequently administering the winning treatment to the remaining N-n units in the population. Sample sizes and expected rewards for standard t- and z- tests are also provided.
Cluster user-supplied somatic read counts with corresponding allele-specific copy number and tumor purity to infer feasible underlying intra-tumor heterogeneity in terms of number of subclones, multiplicity, and allocation (Little et al. (2019) <doi:10.1186/s13073-019-0643-9>).
Calculates a degree of spatial association between regionalizations or categorical maps using the information-theoretical V-measure (Nowosad and Stepinski (2018) <doi:10.1080/13658816.2018.1511794>). It also offers an R implementation of the MapCurve method (Hargrove et al. (2006) <doi:10.1007/s10109-006-0025-x>).
Conducts hierarchical partitioning to calculate individual contributions of spatial and predictors (groups) towards total R2 for spatial simultaneous autoregressive model.
Bundles functions used to analyze the harmfulness of trial errors in criminal trials. Functions in the Scientific Analysis of Trial Errors ('sate') package help users estimate the probability that a jury will find a defendant guilty given jurors preferences for a guilty verdict and the uncertainty of that estimate. Users can also compare actual and hypothetical trial conditions to conduct harmful error analysis. The conceptual framework is discussed by Barry Edwards, A Scientific Framework for Analyzing the Harmfulness of Trial Errors, UCLA Criminal Justice Law Review (2024) <doi:10.5070/CJ88164341> and Barry Edwards, If The Jury Only Knew: The Effect Of Omitted Mitigation Evidence On The Probability Of A Death Sentence, Virginia Journal of Social Policy & the Law (2025) <https://vasocialpolicy.org/wp-content/uploads/2025/05/Edwards-If-The-Jury-Only-Knew.pdf>. The relationship between individual jurors verdict preferences and the probability that a jury returns a guilty verdict has been studied by Davis (1973) <doi:10.1037/h0033951>; MacCoun & Kerr (1988) <doi:10.1037/0022-3514.54.1.21>, and Devine et el. (2001) <doi:10.1037/1076-8971.7.3.622>, among others.
This package provides a powerful, easy to use syntax for specifying and estimating complex Structural Equation Models. Models can be estimated using Partial Least Squares Path Modeling or Covariance-Based Structural Equation Modeling or covariance based Confirmatory Factor Analysis (Ray, Danks, and Valdez 2021 <doi:10.2139/ssrn.3900621>).
Explore and analyse the genealogy of textual or musical traditions, from their variants, with various stemmatological methods, mainly the disagreement-based algorithms suggested by Camps and Cafiero (2015) <doi:10.1484/M.LECTIO-EB.5.102565>.
The Sparse Marginal Epistasis Test is a computationally efficient genetics method which detects statistical epistasis in complex traits; see Stamp et al. (2025, <doi:10.1101/2025.01.11.632557>) for details.
Calculates (unconditional) post-selection confidence intervals and p-values for the coefficients of (generalized) linear models.
This package provides a stable approach to variable selection through stability selection and the use of a permutation-based objective stability threshold. Lima et al (2021) <doi:10.1038/s41598-020-79317-8>, Meinshausen and Buhlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>.
Spectra viewer, organizer, data preparation and property blocks from within R or stand-alone. Binary (application) part is installed separately using spnInstallApp() from spectrino package.
This package provides a general framework to perform statistical inference of each gene pair and global inference of whole-scale gene pairs in gene networks using the well known Gaussian graphical model (GGM) in a time-efficient manner. We focus on the high-dimensional settings where p (the number of genes) is allowed to be far larger than n (the number of subjects). Four main approaches are supported in this package: (1) the bivariate nodewise scaled Lasso (Ren et al (2015) <doi:10.1214/14-AOS1286>) (2) the de-sparsified nodewise scaled Lasso (Jankova and van de Geer (2017) <doi:10.1007/s11749-016-0503-5>) (3) the de-sparsified graphical Lasso (Jankova and van de Geer (2015) <doi:10.1214/15-EJS1031>) (4) the GGM estimation with false discovery rate control (FDR) using scaled Lasso or Lasso (Liu (2013) <doi:10.1214/13-AOS1169>). Windows users should install Rtools before the installation of this package.
Spatio-temporal change of support (STCOS) methods are designed for statistical inference on geographic and time domains which differ from those on which the data were observed. In particular, a parsimonious class of STCOS models supporting Gaussian outcomes was introduced by Bradley, Wikle, and Holan <doi:10.1002/sta4.94>. The stcos package contains tools which facilitate use of STCOS models.
Execute the self-controlled case series (SCCS) design using observational data in the OMOP Common Data Model. Extracts all necessary data from the database and transforms it to the format required for SCCS. Age and season can be modeled using splines assuming constant hazard within calendar months. Event-dependent censoring of the observation period can be corrected for. Many exposures can be included at once (MSCCS), with regularization on all coefficients except for the exposure of interest. Includes diagnostics for all major assumptions of the SCCS.
Fast and efficient sampling from general univariate probability density functions. Implements a rejection sampling approach designed to take advantage of modern CPU caches and minimise evaluation of the target density for most samples. Many standard densities are internally implemented in C for high performance, with general user defined densities also supported. A paper describing the methodology will be released soon.
SMART trial design, as described by He, J., McClish, D., Sabo, R. (2021) <doi:10.1080/19466315.2021.1883472>, includes multiple stages of randomization, where participants are randomized to an initial treatment in the first stage and then subsequently re-randomized between treatments in the following stage.