Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a platform for computing competition indices and experimenting with spatially explicit individual-based vegetation models.
An interactive charting library built on Svelte and D3 to easily produce SVG charts in R. Designed to simplify shiny development by eliminating the need for renderUI(), insertUI(), removeUI(), and shiny proxy functions, using Svelte''s reactive state system instead.
This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.
Launch a shiny application for tidymodels results. For classification or regression models, the app can be used to determine if there is lack of fit or poorly predicted points.
This package provides functions that simplify calls to the Skilljar API. See <https://api.skilljar.com/docs/> for documentation on the Skilljar API. This package is not supported by Skilljar'.
This package provides ggplot2 extensions to construct glyph-maps for visualizing seasonality in spatiotemporal data. See the Journal of Statistical Software reference: Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2024) <doi:10.18637/jss.v110.i07>. The manuscript for this package is currently under preparation and can be found on GitHub at <https://github.com/maliny12/paper-sugarglider>.
This package provides functions for the collection of 3D points and curves using a stereo camera setup.
This package performs non-parametric tests of parametric specifications. Five tests are available. Specific bandwidth and kernel methods can be chosen along with many other options. Allows parallel computing to quickly compute p-values based on the bootstrap. Methods implemented in the package are H.J. Bierens (1982) <doi:10.1016/0304-4076(82)90105-1>, J.C. Escanciano (2006) <doi:10.1017/S0266466606060506>, P.L. Gozalo (1997) <doi:10.1016/S0304-4076(97)86571-2>, P. Lavergne and V. Patilea (2008) <doi:10.1016/j.jeconom.2007.08.014>, P. Lavergne and V. Patilea (2012) <doi:10.1198/jbes.2011.07152>, J.H. Stock and M.W. Watson (2006) <doi:10.1111/j.1538-4616.2007.00014.x>, C.F.J. Wu (1986) <doi:10.1214/aos/1176350142>, J. Yin, Z. Geng, R. Li, H. Wang (2010) <https://www.jstor.org/stable/24309002> and J.X. Zheng (1996) <doi:10.1016/0304-4076(95)01760-7>.
Plots survival models from the survival package. Additionally, it plots curves of multistate models from the mstate package. Typically, a plot is drawn by the sequence survplot(), confIntArea(), survCurve() and nrAtRisk(). The separation of the plot in this 4 functions allows for great flexibility to make a custom plot for publication.
This package provides a system that provides a streamlined way of generating publication ready plots for known Single-Cell transcriptomics data in a â publication readyâ format. This is, the goal is to automatically generate plots with the highest quality possible, that can be used right away or with minimal modifications for a research article.
This package implements an extension of the Generalized Berk-Jones (GBJ) statistic for survival data, sGBJ. It computes the sGBJ statistic and its p-value for testing the association between a gene set and a time-to-event outcome with possible adjustment on additional covariates. Detailed method is available at Villain L, Ferte T, Thiebaut R and Hejblum BP (2021) <doi:10.1101/2021.09.07.459329>.
This package provides a flexible moving average algorithm for modeling drug exposure in pharmacoepidemiology studies as presented in the article: Ouchi, D., Giner-Soriano, M., Gómez-Lumbreras, A., Vedia Urgell, C.,Torres, F., & Morros, R. (2022). "Automatic Estimation of the Most Likely Drug Combination in Electronic Health Records Using the Smooth Algorithm : Development and Validation Study." JMIR medical informatics, 10(11), e37976. <doi:10.2196/37976>.
Evaluating probabilistic forecasts via proper scoring rules. scoring implements the beta, power, and pseudospherical families of proper scoring rules, along with ordered versions of the latter two families. Included among these families are popular rules like the Brier (quadratic) score, logarithmic score, and spherical score. For two-alternative forecasts, also includes functionality for plotting scores that one would obtain under specific scoring rules.
Visualize and tabulate single-choice, multiple-choice, matrix-style questions from survey data. Includes ability to group cross-tabulations, frequency distributions, and plots by categorical variables and to integrate survey weights. Ideal for quickly uncovering descriptive patterns in survey data.
Explore synesthesia consistency test data, calculate consistency scores, and classify participant data as valid or invalid.
Fast computation of multivariate analyses of small (10s to 100s markers) to big (1000s to 100000s) genotype data. Runs Principal Component Analysis allowing for centering, z-score standardization and scaling for genetic drift, projection of ancient samples to modern genetic space and multivariate tests for differences in group location (Permutation-Based Multivariate Analysis of Variance) and dispersion (Permutation-Based Multivariate Analysis of Dispersion).
Methodology for supervised grouping aka "clustering" of potentially many predictor variables, such as genes etc, implementing algorithms PELORA and WILMA'.
Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) <doi:10.48550/arXiv.1906.03821>.
Fits, spatially predicts, and temporally forecasts space-time data using Gaussian Process (GP): (1) spatially varying coefficient process models and (2) spatio-temporal dynamic linear models. Bakar et al., (2016). Bakar et al., (2015).
Simultaneous/joint diagonalization of local autocovariance matrices to estimate spatio-temporally uncorrelated random fields.
This package provides a suite of functions that allow a full, fast, and efficient Bayesian treatment of the Bradley--Terry model. Prior assumptions about the model parameters can be encoded through a multivariate normal prior distribution. Inference is performed using a latent variable representation of the model.
Approximate Bayesian regularization using Gaussian approximations. The input is a vector of estimates and a Gaussian error covariance matrix of the key parameters. Bayesian shrinkage is then applied to obtain parsimonious solutions. The method is described on Karimova, van Erp, Leenders, and Mulder (2024) <DOI:10.31234/osf.io/2g8qm>. Gibbs samplers are used for model fitting. The shrinkage priors that are supported are Gaussian (ridge) priors, Laplace (lasso) priors (Park and Casella, 2008 <DOI:10.1198/016214508000000337>), and horseshoe priors (Carvalho, et al., 2010; <DOI:10.1093/biomet/asq017>). These priors include an option for grouped regularization of different subsets of parameters (Meier et al., 2008; <DOI:10.1111/j.1467-9868.2007.00627.x>). F priors are used for the penalty parameters lambda^2 (Mulder and Pericchi, 2018 <DOI:10.1214/17-BA1092>). This correspond to half-Cauchy priors on lambda (Carvalho, Polson, Scott, 2010 <DOI:10.1093/biomet/asq017>).
Similarity regression, evaluating the probability of association between sets of ontological terms and binary response vector. A no-association model is compared with one in which the log odds of a true response is linked to the semantic similarity between terms and a latent characteristic ontological profile - Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases', Greene et al 2016 <doi:10.1016/j.ajhg.2016.01.008>.
An efficient implementation of Scalable Bayesian Rule Lists Algorithm, a competitor algorithm for decision tree algorithms; see Hongyu Yang, Cynthia Rudin, Margo Seltzer (2017) <https://proceedings.mlr.press/v70/yang17h.html>. It builds from pre-mined association rules and have a logical structure identical to a decision list or one-sided decision tree. Fully optimized over rule lists, this algorithm strikes practical balance between accuracy, interpretability, and computational speed.