Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for the simulation of data in the context of small area estimation. Combine all steps of your simulation - from data generation over drawing samples to model fitting - in one object. This enables easy modification and combination of different scenarios. You can store your results in a folder or start the simulation in parallel.
Identify statistically significant flow clusters using the local spatial network autocorrelation statistic G_ij* proposed by Berglund and Karlström (1999) <doi:10.1007/s101090050013>. The metric, an extended statistic of Getis/Ord G ('Getis and Ord 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x>, detects a group of flows having similar traits in terms of directionality. You provide OD data and the associated polygon to get results with several parameters, some of which are defined by spdep package.
Carries out a two-level sample selection where the possibility of an initially selected site not wanting to participate is anticipated, and the site is optimally replaced. The procedure aims to reduce bias (and/or loss of external validity) with respect to the target population. In selecting units and sub-units, sitepickR uses the cube method developed by Deville & Tillé', (2004) <http://www.math.helsinki.fi/msm/banocoss/Deville_Tille_2004.pdf> and described in Tillé (2011) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2011002/article/11609-eng.pdf?st=5-sx8Q8n>. The cube method is a probability sampling method that is designed to satisfy criteria for balance between the sample and the population. Recent research has shown that this method performs well in simulations for studies of educational programs (see Fay & Olsen (2021, under review). To implement the cube method, sitepickR uses the sampling R package <https://cran.r-project.org/package=sampling>. To implement statistical matching, sitepickR uses the MatchIt R package <https://cran.r-project.org/package=MatchIt>.
This package provides functions to perform stepwise split regularized regression. The approach first uses a stepwise algorithm to split the variables into the models with a goodness of fit criterion, and then regularization is applied to each model. The weights of the models in the ensemble are determined based on a criterion selected by the user.
Allows users to produce diagnostic procedures and graphic tools for the evaluation of Small Area estimators.
This package provides a simple package facilitating ML based analysis for physics education research (PER) purposes. The implemented machine learning technique is random forest optimized by item response theory (IRT) for feature selection and genetic algorithm (GA) for hyperparameter tuning. The data analyzed here has been made available in the CRAN repository through the spheredata package. The SPHERE stands for Students Performance in Physics Education Research (PER). The students are the eleventh graders learning physics at the high school curriculum. We follow the stream of multidimensional students assessment as probed by some research based assessments in PER. The goal is to predict the students performance at the end of the learning process. Three learning domains are measured including conceptual understanding, scientific ability, and scientific attitude. Furthermore, demographic backgrounds and potential variables predicting students performance on physics are also demonstrated.
Main properties and regression procedures using a generalization of the Dirichlet distribution called Simplicial Generalized Beta distribution. It is a new distribution on the simplex (i.e. on the space of compositions or positive vectors with sum of components equal to 1). The Dirichlet distribution can be constructed from a random vector of independent Gamma variables divided by their sum. The SGB follows the same construction with generalized Gamma instead of Gamma variables. The Dirichlet exponents are supplemented by an overall shape parameter and a vector of scales. The scale vector is itself a composition and can be modeled with auxiliary variables through a log-ratio transformation. Graf, M. (2017, ISBN: 978-84-947240-0-8). See also the vignette enclosed in the package.
This package performs inference for C of risk prediction models with censored survival data, using the method proposed by Uno et al. (2011) <doi:10.1002/sim.4154>. Inference for the difference in C between two competing prediction models is also implemented.
Normalization based a subset of negative control probes as described in Subset quantile normalization using negative control features'. Wu Z, Aryee MJ, J Comput Biol. 2010 Oct;17(10):1385-95 [PMID 20976876].
Construct subtests from a pool of items by using ant-colony-optimization, genetic algorithms, brute force, or random sampling. Schultze (2017) <doi:10.17169/refubium-622>.
Training and validation of a custom (or data-driven) Structural Equation Models using Deep Neural Networks or Machine Learning algorithms, which extend the fitting procedures of the SEMgraph R package <doi:10.32614/CRAN.package.SEMgraph>.
Sensitivity analysis in structural equation modeling using influence measures and diagnostic plots. Support leave-one-out casewise sensitivity analysis presented by Pek and MacCallum (2011) <doi:10.1080/00273171.2011.561068> and approximate casewise influence using scores and casewise likelihood.
An implementation of sensitivity analysis for phylogenetic comparative methods. The package is an umbrella of statistical and graphical methods that estimate and report different types of uncertainty in PCM: (i) Species Sampling uncertainty (sample size; influential species and clades). (ii) Phylogenetic uncertainty (different topologies and/or branch lengths). (iii) Data uncertainty (intraspecific variation and measurement error).
Unequal granularity of cell type annotation makes it difficult to compare scRNA-seq datasets at scale. Leveraging the ontology system for defining cell type hierarchy, scOntoMatch aims to align cell type annotations to make them comparable across studies. The alignment involves two core steps: first is to trim the cell type tree within each dataset so each cell type does not have descendants, and then map cell type labels cross-studies by direct matching and mapping descendants to ancestors. Various functions for plotting cell type trees and manipulating ontology terms are also provided. In the Single Cell Expression Atlas hosted at EBI, a compendium of datasets with curated ontology labels are great inputs to this package.
Calculate text polarity sentiment at the sentence level and optionally aggregate by rows or grouping variable(s).
This package provides a set of functions used in teaching STATS 201/208 Data Analysis at the University of Auckland. The functions are designed to make parts of R more accessible to a large undergraduate population who are mostly not statistics majors.
Deals with Young tableaux (field of combinatorics). For standard Young tabeaux, performs enumeration, counting, random generation, the Robinson-Schensted correspondence, and conversion to and from paths on the Young lattice. Also performs enumeration and counting of semistandard Young tableaux, enumeration of skew semistandard Young tableaux, enumeration of Gelfand-Tsetlin patterns, and computation of Kostka numbers.
This package provides a tool for cutting data into intervals. Allows singleton intervals. Always includes the whole range of data by default. Flexible labelling. Convenience functions for cutting by quantiles etc. Handles dates, times, units and other vectors.
Identify 17 Sustainable Development Goals and associated 169 targets in text.
This package provides a set of tools for examining the design and analysis aspects of stepped wedge cluster randomized trials (SW CRT) based on a repeated cross-sectional or cohort sampling scheme (Hussey MA and Hughes JP (2007) Contemporary Clinical Trials 28:182-191).
Density, distribution function, quantile function and random generation for the skewed t distribution of Fernandez and Steel.
Genomic and multi-environmental soybean data. Soybean Nested Association Mapping (SoyNAM) project dataset funded by the United Soybean Board (USB). BLUP function formats data for genome-wide prediction and association analysis.
Semantic Versions allow for standardized management versions. This package implements semantic versioning handling in R. using R6 to create a mutable object that can handle deciphering and checking versions.
This package provides a dynamic programming solution to segmentation based on maximization of arbitrary similarity measures within segments. The general idea, theory and this implementation are described in Machne, Murray & Stadler (2017) <doi:10.1038/s41598-017-12401-8>. In addition to the core algorithm, the package provides time-series processing and clustering functions as described in the publication. These are generally applicable where a `k-means` clustering yields meaningful results, and have been specifically developed for clustering of the Discrete Fourier Transform of periodic gene expression data (`circadian or `yeast metabolic oscillations'). This clustering approach is outlined in the supplemental material of Machne & Murray (2012) <doi:10.1371/journal.pone.0037906>), and here is used as a basis of segment similarity measures. Notably, the time-series processing and clustering functions can also be used as stand-alone tools, independent of segmentation, e.g., for transcriptome data already mapped to genes.