Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs parametric and non-parametric estimation and simulation for multi-state discrete-time semi-Markov processes. For the parametric estimation, several discrete distributions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial. The non-parametric estimation concerns the sojourn time distributions, where no assumptions are done on the shape of distributions. Moreover, the estimation can be done on the basis of one or several sample paths, with or without censoring at the beginning or/and at the end of the sample paths. The implemented methods are described in Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>, Barbu, V.S., Limnios, N. (2008) <doi:10.1080/10485250701261913> and Trevezas, S., Limnios, N. (2011) <doi:10.1080/10485252.2011.555543>. Estimation and simulation of discrete-time k-th order Markov chains are also considered.
Perform association test within linear mixed model framework using score test integrated with Empirical Bayes for genome-wide association study. Firstly, score test was conducted for each marker under linear mixed model framework, taking into account the genetic relatedness and population structure. And then all the potentially associated markers were selected with a less stringent criterion. Finally, all the selected markers were placed into a multi-locus model to identify the true quantitative trait nucleotide.
This package provides a set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.
This package produces LaTeX code, HTML/CSS code and ASCII text for well-formatted tables that hold regression analysis results from several models side-by-side, as well as summary statistics.
Design single-case phase, alternation and multiple-baseline experiments, and conduct randomization tests on data gathered by means of such designs, as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>.
This package implements the "shrinkage t" statistic introduced in Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252> and a shrinkage estimate of the "correlation-adjusted t-score" (CAT score) described in Zuber and Strimmer (2009) <DOI:10.1093/bioinformatics/btp460>. It also offers a convenient interface to a number of other regularized t-statistics commonly employed in high-dimensional case-control studies.
Estimate and understand individual-level variation in transmission. Implements density and cumulative compound Poisson discrete distribution functions (Kremer et al. (2021) <doi:10.1038/s41598-021-93578-x>), as well as functions to calculate infectious disease outbreak statistics given epidemiological parameters on individual-level transmission; including the probability of an outbreak becoming an epidemic/extinct (Kucharski et al. (2020) <doi:10.1016/S1473-3099(20)30144-4>), or the cluster size statistics, e.g. what proportion of cases cause X\% of transmission (Lloyd-Smith et al. (2005) <doi:10.1038/nature04153>).
This package provides functions and classes for spatial resampling to use with the rsample package, such as spatial cross-validation (Brenning, 2012) <doi:10.1109/IGARSS.2012.6352393>. The scope of rsample and spatialsample is to provide the basic building blocks for creating and analyzing resamples of a spatial data set, but neither package includes functions for modeling or computing statistics. The resampled spatial data sets created by spatialsample do not contain much overhead in memory.
Get sun position, sunlight phases (times for sunrise, sunset, dusk, etc.), moon position and lunar phase for the given location and time. Most calculations are based on the formulas given in Astronomy Answers articles about position of the sun and the planets : <https://www.aa.quae.nl/en/reken/zonpositie.html>.
This package provides a few major genes and a series of polygene are responsive for each quantitative trait. Major genes are individually identified while polygene is collectively detected. This is mixed major genes plus polygene inheritance analysis or segregation analysis (SEA). In the SEA, phenotypes from a single or multiple bi-parental segregation populations along with their parents are used to fit all the possible models and the best model of the trait for population phenotypic distributions is viewed as the model of the trait. There are fourteen types of population combinations available. Zhang Yuan-Ming, Gai Jun-Yi, Yang Yong-Hua (2003, <doi:10.1017/S0016672303006141>).
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
The synchrosqueezed wavelet transform is implemented. The package is a translation of MATLAB Synchrosqueezing Toolbox, version 1.1 originally developed by Eugene Brevdo (2012). The C code for curve_ext was authored by Jianfeng Lu, and translated to Fortran by Dongik Jang. Synchrosqueezing is based on the papers: [1] Daubechies, I., Lu, J. and Wu, H. T. (2011) Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 30. 243-261. [2] Thakur, G., Brevdo, E., Fukar, N. S. and Wu, H-T. (2013) The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Processing, 93, 1079-1094.
This is a shape preserving spline <doi:10.1137/0720057> which is guaranteed to be monotonic and concave or convex if the data is monotonic and concave or convex. It does not use any optimisation and is therefore quick and smoothly converges to a fixed point in economic dynamics problems including value function iteration. It also automatically gives the first two derivatives of the spline and options for determining behaviour when evaluated outside the interpolation domain.
Detection of item-wise Differential Item Functioning (DIF) in fitted mirt', multipleGroup or bfactor models using score-based structural change tests. Under the hood the sctest() function from the strucchange package is used.
This package provides a simple way for utilizing Sojourn methods for accelerometer processing, as detailed in Lyden K, Keadle S, Staudenmayer J, & Freedson P (2014) <doi:10.1249/MSS.0b013e3182a42a2d>, Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, & Cook DB (2016) <doi:10.1249/MSS.0000000000000915>, and Hibbing PR, Ellingson LD, Dixon PM, & Welk GJ (2018) <doi:10.1249/MSS.0000000000001486>.
Calculate superior identification index and its extensions. Measure the performance of journals based on how well they could identify the top papers by any index (e.g. citation indices) according to Huang & Yang. (2022) <doi:10.1007/s11192-022-04372-z>. These methods could be extended to evaluate other entities such as institutes, countries, etc.
Enables the ability to change or flash the title of the browser window during a shiny session.
Implementation of evolutionary fuzzy systems for the data mining task called "subgroup discovery". In particular, the algorithms presented in this package are: M. J. del Jesus, P. Gonzalez, F. Herrera, M. Mesonero (2007) <doi:10.1109/TFUZZ.2006.890662> M. J. del Jesus, P. Gonzalez, F. Herrera (2007) <doi:10.1109/MCDM.2007.369416> C. J. Carmona, P. Gonzalez, M. J. del Jesus, F. Herrera (2010) <doi:10.1109/TFUZZ.2010.2060200> C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, D. Elizondo (2015) <doi:10.1016/j.ins.2014.11.030> It also provide a Shiny App to ease the analysis. The algorithms work with data sets provided in KEEL, ARFF and CSV format and also with data.frame objects.
Time series area-level models for small area estimation. The package supplements the functionality of the sae package. Specifically, it includes EBLUP fitting of the Rao-Yu model in the original form without a spatial component. The package also offers a modified ("dynamic") version of the Rao-Yu model, replacing the assumption of stationarity. Both univariate and multivariate applications are supported. Of particular note is the allowance for covariance of the area-level sample estimates over time, as encountered in rotating panel designs such as the U.S. National Crime Victimization Survey or present in a time-series of 5-year estimates from the American Community Survey. Key references to the methods include J.N.K. Rao and I. Molina (2015, ISBN:9781118735787), J.N.K. Rao and M. Yu (1994) <doi:10.2307/3315407>, and R.E. Fay and R.A. Herriot (1979) <doi:10.1080/01621459.1979.10482505>.
Spatial coverage sampling and random sampling from compact geographical strata created by k-means. See Walvoort et al. (2010) <doi:10.1016/j.cageo.2010.04.005> for details.
Pathway Analysis is statistically linking observations on the molecular level to biological processes or pathways on the systems(i.e., organism, organ, tissue, cell) level. Traditionally, pathway analysis methods regard pathways as collections of single genes and treat all genes in a pathway as equally informative. However, this can lead to identifying spurious pathways as statistically significant since components are often shared amongst pathways. SIGORA seeks to avoid this pitfall by focusing on genes or gene pairs that are (as a combination) specific to a single pathway. In relying on such pathway gene-pair signatures (Pathway-GPS), SIGORA inherently uses the status of other genes in the experimental context to identify the most relevant pathways. The current version allows for pathway analysis of human and mouse datasets. In addition, it contains pre-computed Pathway-GPS data for pathways in the KEGG and Reactome pathway repositories and mechanisms for extracting GPS for user-supplied repositories.
This package provides a collection of sample datasets on various fields such as automotive performance and safety data to historical demographics and socioeconomic indicators, as well as recreational data. It serves as a resource for researchers and analysts seeking to perform analyses and derive insights from classic data sets in R.
This package provides Sensory and Consumer Data mapping and analysis <doi:10.14569/IJACSA.2017.081266>. The mapping visualization is made available from several features : options in dimension reduction methods and prediction models ranging from linear to non linear regressions. A smoothed version of the map performed using locally weighted regression algorithm is available. A selection process of map stability is provided. A shiny application is included. It presents an easy GUI for the implemented functions as well as a comparative tool of fit models using several criteria. Basic analysis such as characterization of products, panelists and sessions likewise consumer segmentation are also made available.
Slurm', Simple Linux Utility for Resource Management <https://slurm.schedmd.com/>, is a popular Linux based software used to schedule jobs in HPC (High Performance Computing) clusters. This R package provides a specialized lightweight wrapper of Slurm with a syntax similar to that found in the parallel R package. The package also includes a method for creating socket cluster objects spanning multiple nodes that can be used with the parallel package.