_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-smmal 0.0.5
Propagated dependencies: r-xgboost@1.7.11.1 r-splines2@0.5.4 r-randomforest@4.7-1.2 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SMMAL
Licenses: Expat
Synopsis: Semi-Supervised Estimation of Average Treatment Effects
Description:

This package provides a pipeline for estimating the average treatment effect via semi-supervised learning. Outcome regression is fit with cross-fitting using various machine learning method or user customized function. Doubly robust ATE estimation leverages both labeled and unlabeled data under a semi-supervised missing-data framework. For more details see Hou et al. (2021) <doi:10.48550/arxiv.2110.12336>. A detailed vignette is included.

r-spatopic 1.2.0
Propagated dependencies: r-sf@1.0-23 r-rcppprogress@0.4.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-rann@2.6.2 r-iterators@1.0.14 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/xiyupeng/SpaTopic
Licenses: GPL 3+
Synopsis: Topic Inference to Identify Tissue Architecture in Multiplexed Images
Description:

This package provides a novel spatial topic model to integrate both cell type and spatial information to identify the complex spatial tissue architecture on multiplexed tissue images without human intervention. The Package implements a collapsed Gibbs sampling algorithm for inference. SpaTopic is scalable to large-scale image datasets without extracting neighborhood information for every single cell. For more details on the methodology, see <https://xiyupeng.github.io/SpaTopic/>.

r-slfpca 3.0
Propagated dependencies: r-psych@2.5.6 r-fdapace@0.6.0 r-fda@6.3.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SLFPCA
Licenses: GPL 3+
Synopsis: Sparse Logistic Functional Principal Component Analysis
Description:

Implementation for sparse logistic functional principal component analysis (SLFPCA). SLFPCA is specifically developed for functional binary data, and the estimated eigenfunction can be strictly zero on some sub-intervals, which is helpful for interpretation. The crucial function of this package is SLFPCA().

r-skiptrack 0.2.0
Propagated dependencies: r-optimg@0.1.2 r-mvtnorm@1.3-3 r-lifecycle@1.0.4 r-laplacesdemon@16.1.6 r-gridextra@2.3 r-glmnet@4.1-10 r-ggtext@0.1.2 r-ggplot2@4.0.1 r-genmcmcdiag@0.2.3 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/LukeDuttweiler/skipTrack
Licenses: Expat
Synopsis: Bayesian Hierarchical Model that Controls for Non-Adherence in Mobile Menstrual Cycle Tracking
Description:

This package implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.

r-sccatch 3.2.2
Propagated dependencies: r-reshape2@1.4.5 r-progress@1.2.3 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ZJUFanLab/scCATCH
Licenses: GPL 3+
Synopsis: Single Cell Cluster-Based Annotation Toolkit for Cellular Heterogeneity
Description:

An automatic cluster-based annotation pipeline based on evidence-based score by matching the marker genes with known cell markers in tissue-specific cell taxonomy reference database for single-cell RNA-seq data. See Shao X, et al (2020) <doi:10.1016/j.isci.2020.100882> for more details.

r-ssw 0.2.1
Dependencies: python@3.11.14
Propagated dependencies: r-reticulate@1.44.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://nanx.me/ssw-r/
Licenses: Expat
Synopsis: Striped Smith-Waterman Algorithm for Sequence Alignment using SIMD
Description:

This package provides an R interface for SSW (Striped Smith-Waterman) via its Python binding ssw-py'. SSW is a fast C and C++ implementation of the Smith-Waterman algorithm for pairwise sequence alignment using Single-Instruction-Multiple-Data (SIMD) instructions. SSW enhances the standard algorithm by efficiently returning alignment information and suboptimal alignment scores. The core SSW library offers performance improvements for various bioinformatics tasks, including protein database searches, short-read alignments, primary and split-read mapping, structural variant detection, and read-overlap graph generation. These features make SSW particularly useful for genomic applications. Zhao et al. (2013) <doi:10.1371/journal.pone.0082138> developed the original C and C++ implementation.

r-swfscdas 0.6.4
Propagated dependencies: r-tidyr@1.3.1 r-swfscmisc@1.7 r-sf@1.0-23 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-lubridate@1.9.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://swfsc.github.io/swfscDAS/
Licenses: FSDG-compatible
Synopsis: Processing DAS Data Files
Description:

Process and summarize DAS data files. These files are typically, but do not have to be DAS <https://swfsc-publications.fisheries.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-305.PDF> data produced by the Southwest Fisheries Science Center (SWFSC) program WinCruz'. This package standardizes and streamlines basic DAS data processing, and includes a PDF with the DAS data format requirements expected by the package.

r-sdam 1.1.4
Propagated dependencies: r-multiplex@3.9 r-grimport2@0.3-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/sdam-au/sdam/
Licenses: FSDG-compatible
Synopsis: Social Dynamics and Complexity in the Ancient Mediterranean
Description:

This package provides digital tools for performing analyses within Social Dynamics and complexity in the Ancient Mediterranean (SDAM), which is a research group based at the Department of History and Classical Studies at Aarhus University.

r-sbim 1.0.0
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sbim
Licenses: GPL 3+
Synopsis: Simulation-Based Inference using a Metamodel for Log-Likelihood Estimator
Description:

Parameter inference methods for models defined implicitly using a random simulator. Inference is carried out using simulation-based estimates of the log-likelihood of the data. The inference methods implemented in this package are explained in Park, J. (2025) <doi:10.48550/arxiv.2311.09446>. These methods are built on a simulation metamodel which assumes that the estimates of the log-likelihood are approximately normally distributed with the mean function that is locally quadratic around its maximum. Parameter estimation and uncertainty quantification can be carried out using the ht() function (for hypothesis testing) and the ci() function (for constructing a confidence interval for one-dimensional parameters).

r-smahp 0.0.5
Propagated dependencies: r-survival@3.8-3 r-penaft@0.3.2 r-ncvreg@3.16.0 r-glmnet@4.1-10 r-fdrtool@1.2.18 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SMAHP
Licenses: GPL 3
Synopsis: Survival Mediation Analysis of High-Dimensional Proteogenomic Data
Description:

SMAHP (pronounced as SOO-MAP) is a novel multi-omics framework for causal mediation analysis of high-dimensional proteogenomic data with survival outcomes. The full methodological details can be found in our recent preprint by Ahn S et al. (2025) <doi:10.48550/arXiv.2503.08606>.

r-stenr 0.6.9
Propagated dependencies: r-rlang@1.1.6 r-r6@2.6.1 r-moments@0.14.1 r-dplyr@1.1.4 r-data-table@1.17.8 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://statismike.github.io/stenR/
Licenses: Expat
Synopsis: Standardization of Raw Discrete Questionnaire Scores
Description:

An user-friendly framework to preprocess raw item scores of questionnaires into factors or scores and standardize them. Standardization can be made either by their normalization in representative sample, or by import of premade scoring table.

r-spantest 1.1-3
Propagated dependencies: r-rdpack@2.6.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ArdiaD/spantest
Licenses: GPL 3
Synopsis: Mean-Variance Spanning Tests
Description:

This package provides a comprehensive suite of portfolio spanning tests for asset pricing, such as Huberman and Kandel (1987) <doi:10.1111/j.1540-6261.1987.tb03917.x>, Gibbons et al. (1989) <doi:10.2307/1913625>, Kempf and Memmel (2006) <doi:10.1007/BF03396737>, Pesaran and Yamagata (2024) <doi:10.1093/jjfinec/nbad002>, and Gungor and Luger (2016) <doi:10.1080/07350015.2015.1019510>.

r-spbayes 0.4-8
Propagated dependencies: r-sp@2.2-0 r-matrix@1.7-4 r-magic@1.6-1 r-formula@1.2-5 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.finley-lab.com
Licenses: GPL 2+
Synopsis: Univariate and Multivariate Spatial-Temporal Modeling
Description:

Fits univariate and multivariate spatio-temporal random effects models for point-referenced data using Markov chain Monte Carlo (MCMC). Details are given in Finley, Banerjee, and Gelfand (2015) <doi:10.18637/jss.v063.i13> and Finley and Banerjee <doi:10.1016/j.envsoft.2019.104608>.

r-seas 0.7-0
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/mwtoews/seas
Licenses: GPL 2+
Synopsis: Seasonal Analysis and Graphics, Especially for Climatology
Description:

Capable of deriving seasonal statistics, such as "normals", and analysis of seasonal data, such as departures. This package also has graphics capabilities for representing seasonal data, including boxplots for seasonal parameters, and bars for summed normals. There are many specific functions related to climatology, including precipitation normals, temperature normals, cumulative precipitation departures and precipitation interarrivals. However, this package is designed to represent any time-varying parameter with a discernible seasonal signal, such as found in hydrology and ecology.

r-stackimpute 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-sandwich@3.1-1 r-mice@3.18.0 r-mass@7.3-65 r-magrittr@2.0.4 r-dplyr@1.1.4 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=StackImpute
Licenses: GPL 2
Synopsis: Tools for Analysis of Stacked Multiple Imputations
Description:

This package provides methods for inference using stacked multiple imputations augmented with weights. The vignette provides example R code for implementation in general multiple imputation settings. For additional details about the estimation algorithm, we refer the reader to Beesley, Lauren J and Taylor, Jeremy M G (2020) â A stacked approach for chained equations multiple imputation incorporating the substantive modelâ <doi:10.1111/biom.13372>, and Beesley, Lauren J and Taylor, Jeremy M G (2021) â Accounting for not-at-random missingness through imputation stackingâ <arXiv:2101.07954>.

r-survawkmt2 1.0.1
Propagated dependencies: r-survival@3.8-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=survAWKMT2
Licenses: GPL 2
Synopsis: Two-Sample Tests Based on Differences of Kaplan-Meier Curves
Description:

Tests for equality of two survival functions based on integrated weighted differences of two Kaplan-Meier curves.

r-sar 1.0.4
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-r6@2.6.1 r-matrix@1.7-4 r-jsonlite@2.0.0 r-httr@1.4.7 r-dplyr@1.1.4 r-azurestor@3.7.1 r-azurermr@2.4.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/hongooi73/SAR
Licenses: Expat
Synopsis: Smart Adaptive Recommendations
Description:

Smart Adaptive Recommendations (SAR) is the name of a fast, scalable, adaptive algorithm for personalized recommendations based on user transactions and item descriptions. It produces easily explainable/interpretable recommendations and handles "cold item" and "semi-cold user" scenarios. This package provides two implementations of SAR': a standalone implementation, and an interface to a web service in Microsoft's Azure cloud: <https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md>. The former allows fast and easy experimentation, and the latter provides robust scalability and extra features for production use.

r-siminf 10.1.0
Dependencies: gsl@2.8
Propagated dependencies: r-matrix@1.7-4 r-mass@7.3-65 r-digest@0.6.39
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/stewid/SimInf
Licenses: GPL 3
Synopsis: Framework for Data-Driven Stochastic Disease Spread Simulations
Description:

This package provides an efficient and very flexible framework to conduct data-driven epidemiological modeling in realistic large scale disease spread simulations. The framework integrates infection dynamics in subpopulations as continuous-time Markov chains using the Gillespie stochastic simulation algorithm and incorporates available data such as births, deaths and movements as scheduled events at predefined time-points. Using C code for the numerical solvers and OpenMP (if available) to divide work over multiple processors ensures high performance when simulating a sample outcome. One of our design goals was to make the package extendable and enable usage of the numerical solvers from other R extension packages in order to facilitate complex epidemiological research. The package contains template models and can be extended with user-defined models. For more details see the paper by Widgren, Bauer, Eriksson and Engblom (2019) <doi:10.18637/jss.v091.i12>. The package also provides functionality to fit models to time series data using the Approximate Bayesian Computation Sequential Monte Carlo ('ABC-SMC') algorithm of Toni and others (2009) <doi:10.1098/rsif.2008.0172> or the Particle Markov Chain Monte Carlo ('PMCMC') algorithm of Andrieu and others (2010) <doi:10.1111/j.1467-9868.2009.00736.x>.

r-shinylogs 0.2.1
Propagated dependencies: r-shiny@1.11.1 r-nanotime@0.3.12 r-jsonlite@2.0.0 r-htmltools@0.5.8.1 r-digest@0.6.39 r-data-table@1.17.8 r-bit64@4.6.0-1 r-anytime@0.3.12
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/dreamRs/shinylogs
Licenses: GPL 3
Synopsis: Record Everything that Happens in a 'Shiny' Application
Description:

Track and record the use of applications and the user's interactions with Shiny inputs. Allows to trace the inputs with which the user interacts, the outputs generated, as well as the errors displayed in the interface.

r-shortuuid 0.1.0
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shortuuid
Licenses: Expat
Synopsis: Generate and Translate Standard UUIDs
Description:

Generate and translate standard Universally Unique Identifiers (UUIDs) into shorter - or just different - formats and back. Also implements base58 encoders and decoders.

r-statcomp 0.1.0
Propagated dependencies: r-zoo@1.8-14 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=statcomp
Licenses: GPL 2
Synopsis: Statistical Complexity and Information Measures for Time Series Analysis
Description:

An implementation of local and global statistical complexity measures (aka Information Theory Quantifiers, ITQ) for time series analysis based on ordinal statistics (Bandt and Pompe (2002) <DOI:10.1103/PhysRevLett.88.174102>). Several distance measures that operate on ordinal pattern distributions, auxiliary functions for ordinal pattern analysis, and generating functions for stochastic and deterministic-chaotic processes for ITQ testing are provided.

r-sssimple 0.6.6
Propagated dependencies: r-mvtnorm@1.3-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SSsimple
Licenses: GPL 2+
Synopsis: State Space Models
Description:

Simulate, solve state space models.

r-simcat 1.0.1
Propagated dependencies: r-shinycssloaders@1.1.0 r-shiny@1.11.1 r-mirtcat@1.14 r-mirt@1.45.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/alexandrejaloto/simCAT
Licenses: Expat
Synopsis: Implements Computerized Adaptive Testing Simulations
Description:

Computerized Adaptive Testing simulations with dichotomous and polytomous items. Selects items with Maximum Fisher Information method or randomly, with or without constraints (content balancing and item exposure control). Evaluates the simulation results in terms of precision, item exposure, and test length. Inspired on Magis & Barrada (2017) <doi:10.18637/jss.v076.c01>.

r-saehb-tf-beta 0.2.0
Propagated dependencies: r-stringr@1.6.0 r-stanheaders@2.32.10 r-rstantools@2.5.0 r-rstan@2.32.7 r-rcppparallel@5.1.11-1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-bh@1.87.0-1 r-bayesplot@1.14.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/Nasyazahira/saeHB.TF.beta
Licenses: GPL 3+
Synopsis: SAE using HB Twofold Subarea Model under Beta Distribution
Description:

Estimates area and subarea level proportions using the Small Area Estimation (SAE) Twofold Subarea Model with a hierarchical Bayesian (HB) approach under Beta distribution. A number of simulated datasets generated for illustration purposes are also included. The rstan package is employed to estimate parameters via the Hamiltonian Monte Carlo and No U-Turn Sampler algorithm. The model-based estimators include the HB mean, the variation of the mean, and quantiles. For references, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, Erciulescu et al.(2019) <doi:10.1111/rssa.12390>, and Yudasena (2024).

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208