Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions that provide statistical methods for interval-censored (grouped) data. The package supports the estimation of linear and linear mixed regression models with interval-censored dependent variables. Parameter estimates are obtained by a stochastic expectation maximization algorithm. Furthermore, the package enables the direct (without covariates) estimation of statistical indicators from interval-censored data via an iterative kernel density algorithm. Survey and Organisation for Economic Co-operation and Development (OECD) weights can be included into the direct estimation (see, Walter, P. (2019) <doi:10.17169/refubium-1621>).
This package provides functions that automate accessing, downloading and exploring Soil Moisture and Ocean Salinity (SMOS) Level 4 (L4) data developed by Barcelona Expert Center (BEC). Particularly, it includes functions to search for, acquire, extract, and plot BEC-SMOS L4 soil moisture data downscaled to ~1 km spatial resolution. Note that SMOS is one of Earth Explorer Opportunity missions by the European Space Agency (ESA). More information about SMOS products can be found at <https://earth.esa.int/eogateway/missions/smos/data>.
This package provides a mechanism for easily generating and organizing a collection of seeds from a single seed, which may be subsequently used to ensure reproducibility in processes/pipelines that utilize multiple random components (e.g., trial simulation).
This package provides functions to perform simulations of ANOVA designs of up to three factors. Calculates the observed power and average observed effect size for all main effects and interactions in the ANOVA, and all simple comparisons between conditions. Includes functions for analytic power calculations and additional helper functions that compute effect sizes for ANOVA designs, observed error rates in the simulations, and functions to plot power curves. Please see Lakens, D., & Caldwell, A. R. (2021). "Simulation-Based Power Analysis for Factorial Analysis of Variance Designs". <doi:10.1177/2515245920951503>.
Allows users to easily build custom docker images <https://docs.docker.com/> from Amazon Web Service Sagemaker <https://aws.amazon.com/sagemaker/> using Amazon Web Service CodeBuild <https://aws.amazon.com/codebuild/>.
Calculate point estimates and their standard errors in complex household surveys using bootstrap replicates. Bootstrapping considers survey design with a rotating panel. A comprehensive description of the methodology can be found under <https://statistikat.github.io/surveysd/articles/methodology.html>.
Please see the shinytest to shinytest2 migration guide at <https://rstudio.github.io/shinytest2/articles/z-migration.html>.
This package provides functions to calculate indices for soundscape ecology and other ecology research that uses audio recordings.
Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) <doi:10.1007/s42081-021-00134-y>. The package propose also a method based on optimal transport and balanced sampling, see Raphaël Jauslin and Yves Tillé <doi:10.1016/j.jspi.2022.12.003>.
Includes general data manipulation functions, algorithms for statistical disclosure control (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6> and functions for hierarchical computations by sparse model matrices (Langsrud, 2023) <doi:10.32614/RJ-2023-088>.
This package provides a collection of tools for analyzing significance of assets, funds, and trading strategies, based on the Sharpe ratio and overfit of the same. Provides density, distribution, quantile and random generation of the Sharpe ratio distribution based on normal returns, as well as the optimal Sharpe ratio over multiple assets. Computes confidence intervals on the Sharpe and provides a test of equality of Sharpe ratios based on the Delta method. The statistical foundations of the Sharpe can be found in the author's Short Sharpe Course <doi:10.2139/ssrn.3036276>.
Setaria viridis (green foxtail) is a common weed. This package contains measurements from individual branches of a wild Setaria viridis plant collected near the author's home. The data is intended for use in data analysis practice.
Implement a promising, and yet little explored protocol for bioacoustical analysis, the eigensound method by MacLeod, Krieger and Jones (2013) <doi:10.4404/hystrix-24.1-6299>. Eigensound is a multidisciplinary method focused on the direct comparison between stereotyped sounds from different species. SoundShape', in turn, provide the tools required for anyone to go from sound waves to Principal Components Analysis, using tools extracted from traditional bioacoustics (i.e. tuneR and seewave packages), geometric morphometrics (i.e. geomorph package) and multivariate analysis (e.g. stats package). For more information, please see Rocha and Romano (2021) and check SoundShape repository on GitHub for news and updates <https://github.com/p-rocha/SoundShape>.
This package provides a new diagram for the verification of vector variables (wind, current, etc) generated by multiple models against a set of observations is presented in this package. It has been designed as a generalization of the Taylor diagram to two dimensional quantities. It is based on the analysis of the two-dimensional structure of the mean squared error matrix between model and observations. The matrix is divided into the part corresponding to the relative rotation and the bias of the empirical orthogonal functions of the data. The full set of diagnostics produced by the analysis of the errors between model and observational vector datasets comprises the errors in the means, the analysis of the total variance of both datasets, the rotation matrix corresponding to the principal components in observation and model, the angle of rotation of model-derived empirical orthogonal functions respect to the ones from observations, the standard deviation of model and observations, the root mean squared error between both datasets and the squared two-dimensional correlation coefficient. See the output of function UVError() in this package.
Displays the content of a R script into the Cytoscape network-visualization app <https://cytoscape.org/>.
Calculates and plots the SiZer map for scatterplot data. A SiZer map is a way of examining when the p-th derivative of a scatterplot-smoother is significantly negative, possibly zero or significantly positive across a range of smoothing bandwidths.
This package provides a set of functions for obtaining positional parameters and magnitude difference between components of binary and multiple stellar systems from series of speckle images.
Stochastic frontier analysis with advanced methods. In particular, it applies the approach proposed by Latruffe et al. (2017) <DOI:10.1093/ajae/aaw077> to estimate a stochastic frontier with technical inefficiency effects when one input is endogenous.
Collection of datasets from Sen & Srivastava: "Regression Analysis, Theory, Methods and Applications", Springer. Sources for individual data files are more fully documented in the book.
Stochastic dominance tests help ranking different distributions. The package implements the consistent test for stochastic dominance by Barrett and Donald (2003) <doi:10.1111/1468-0262.00390>. Specifically, it implements Barrett and Donald's Kolmogorov-Smirnov type tests for first- and second-order stochastic dominance based on bootstrapping 2 and 1.
Helpers for addressing the issue of disconnected spatial units. It allows for convenient adding and removal of neighbourhood connectivity between areal units prior to modelling, with the visual aid of maps. Post-modelling, it reduces the human workload for extracting, tidying and mapping predictions from areal models.
This package implements different inventory models, the bullwhip effect and other supply chain performance variables. Marchena Marlene (2010) <arXiv:1009.3977>.
This package provides a simple function that anonymises a list of variables in a consistent way: anonymised factors are not recycled and the same original levels receive the same anonymised factor even if located in different datasets.
This package implements tidy syllabification of transcription. Based on @kylebgorman's python implementation <https://github.com/kylebgorman/syllabify>.