Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for analysing the agreement of two or more rankings of the same items. Examples are importance rankings of predictor variables and risk predictions of subjects. Benchmarks for agreement are computed based on random permutation and bootstrap. See Ekstrøm CT, Gerds TA, Jensen, AK (2018). "Sequential rank agreement methods for comparison of ranked lists." _Biostatistics_, *20*(4), 582-598 <doi:10.1093/biostatistics/kxy017> for more information.
Analysis of species limits and DNA barcoding data. Included are functions for generating important summary statistics from DNA barcode data, assessing specimen identification efficacy, testing and optimizing divergence threshold limits, assessment of diagnostic nucleotides, and calculation of the probability of reciprocal monophyly. Additionally, a sliding window function offers opportunities to analyse information across a gene, often used for marker design in degraded DNA studies. Further information on the package has been published in Brown et al (2012) <doi:10.1111/j.1755-0998.2011.03108.x>.
Stores and eases the manipulation of spectra and associated data, with dedicated classes for spatial and soil-related data.
The purpose of this package is to manipulate SVG files that are templates of charts the user wants to produce. In vector graphics one copes with x-/y-coordinates of elements (e.g. lines, rectangles, text). Their scale is often dependent on the program that is used to produce the graphics. In applied statistics one usually has numeric values on a fixed scale (e.g. percentage values between 0 and 100) to show in a chart. Basically, svgtools transforms the statistical values into coordinates and widths/heights of the vector graphics. This is done by stackedBar() for bar charts, by linesSymbols() for charts with lines and/or symbols (dot markers) and scatterSymbols() for scatterplots.
You can use the functions provided by the package to make various statistical tables, such as baseline data tables. Creates Table 1', i.e., a description of the baseline patient characteristics, which is essential in every medical research. Supports both continuous and categorical variables, as well as p-values and standardized mean differences. This method was described by Mary L McHugh (2013) <doi:10.11613/bm.2013.018>.
This package performs receptor abundance estimation for single cell RNA-sequencing data using a supervised feature selection mechanism and a thresholded gene set scoring procedure. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for reduced rank reconstruction and rank-k selection is detailed in: Javaid et al., (2022) <doi:10.1101/2022.10.08.511197>. Gene set scoring procedure is described in: Frost et al., (2020) <doi:10.1093/nar/gkaa582>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.
Calculating daily global solar radiation at horizontal surface using several well-known models (i.e. Angstrom-Prescott, Supit-Van Kappel, Hargreaves, Bristow and Campbell, and Mahmood-Hubbard), and model calibration based on ground-truth data, and (3) model auto-calibration. The FAO Penmann-Monteith equation to calculate evapotranspiration is also included.
Monte Carlo simulations of a game-theoretic model for the legal exemption system of the European cartel law are implemented in order to estimate the (mean) deterrent effect of this system. The input and output parameters of the simulated cartel opportunities can be visualized by three-dimensional projections. A description of the model is given in Moritz et al. (2018) <doi:10.1515/bejeap-2017-0235>.
Small area estimation unit level models (Battese-Harter-Fuller model) with a Bayesian Hierarchical approach. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Battese et al. (1988) <doi:10.1080/01621459.1988.10478561>.
The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators <doi:10.18637/jss.v107.i08>. It supports one-step (Pinkse and Slade, 1998) <doi:10.1016/S0304-4076(97)00097-3> and two-step GMM estimator along with the linearized GMM estimator proposed by Klier and McMillen (2008) <doi:10.1198/073500107000000188>. It also allows for either Probit or Logit model and compute the average marginal effects. All these models are presented in Sarrias and Piras (2023) <doi:10.1016/j.jocm.2023.100432>.
Pass named and unnamed character vectors into specified positions in strings. This represents an attempt to replicate some of python's string formatting.
This package provides a rudimentary sequencer to define, manipulate and mix sound samples. The underlying motivation is to sonify data, as demonstrated in the blog <https://globxblog.github.io/>, the presentation by Renard and Le Bescond (2022, <https://hal.science/hal-03710340v1>) or the poster by Renard et al. (2023, <https://hal.inrae.fr/hal-04388845v1>).
This package provides a SAS interface, through SASPy'(<https://sassoftware.github.io/saspy/>) and reticulate'(<https://rstudio.github.io/reticulate/>). This package helps you create SAS sessions, execute SAS code in remote SAS servers, retrieve execution results and log, and exchange datasets between SAS and R'. It also helps you to install SASPy and create a configuration file for the connection. Please review the SASPy license file as instructed so that you comply with its separate and independent license.
Understand human performance from the perspective of sampling, both looking at how people generate samples and how people use the samples they have generated. A longer overview and other resources can be found at <https://sampling.warwick.ac.uk>.
An implementation of ranked sparsity methods, including penalized regression methods such as the sparsity-ranked lasso, its non-convex alternatives, and elastic net, as well as the sparsity-ranked Bayesian Information Criterion. As described in Peterson and Cavanaugh (2022) <doi:10.1007/s10182-021-00431-7>, ranked sparsity is a philosophy with methods primarily useful for variable selection in the presence of prior informational asymmetry, which occurs in the context of trying to perform variable selection in the presence of interactions and/or polynomials. Ultimately, this package attempts to facilitate dealing with cumbersome interactions and polynomials while not avoiding them entirely. Typically, models selected under ranked sparsity principles will also be more transparent, having fewer falsely selected interactions and polynomials than other methods.
Offers a comprehensive solution for managing empty states in Shiny applications. It provides tools to create both default and customizable components for scenarios where data is absent or doesn't match user-defined filters. The package prioritizes user experience, ensuring clarity and consistency even when data is not available to display.
This package provides a framework for extracting semantic motifs around entities in textual data. It implements an entity-centered semantic grammar that distinguishes six classes of motifs: actions of an entity, treatments of an entity, agents acting upon an entity, patients acted upon by an entity, characterizations of an entity, and possessions of an entity. Motifs are identified by applying a set of extraction rules to a parsed text object that includes part-of-speech tags and dependency annotations - such as those generated by spacyr'. For further reference, see: Stuhler (2022) <doi: 10.1177/00491241221099551>.
This package provides a database-independent JDBC interface.
This package provides tools to simulate multi-omics datasets with predefined signal structures. The generated data can be used for testing, validating, and benchmarking integrative analysis methods such as factor models and clustering approaches. This version includes enhanced signal customization, visualization tools (scatter, histogram, 3D), MOFA-based analysis pipelines, PowerPoint export, and statistical profiling of datasets. Designed for both method development and teaching, SUMO supports real and synthetic data pipelines with interpretable outputs. Tini, Giulia, et al (2019) <doi:10.1093/bib/bbx167>.
Implementations for two different Bayesian models of differential co-expression. scdeco.cop() fits the bivariate Gaussian copula model from Zichen Ma, Shannon W. Davis, Yen-Yi Ho (2023) <doi:10.1111/biom.13701>, while scdeco.pg() fits the bivariate Poisson-Gamma model from Zhen Yang, Yen-Yi Ho (2022) <doi:10.1111/biom.13457>.
Introduction to some novel accurate hybrid methods of geostatistical and machine learning methods for spatial predictive modelling. It contains two commonly used geostatistical methods, two machine learning methods, four hybrid methods and two averaging methods. For each method, two functions are provided. One function is for assessing the predictive errors and accuracy of the method based on cross-validation. The other one is for generating spatial predictions using the method. For details please see: Li, J., Potter, A., Huang, Z., Daniell, J. J. and Heap, A. (2010) <https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/71407> Li, J., Heap, A. D., Potter, A., Huang, Z. and Daniell, J. (2011) <doi:10.1016/j.csr.2011.05.015> Li, J., Heap, A. D., Potter, A. and Daniell, J. (2011) <doi:10.1016/j.envsoft.2011.07.004> Li, J., Potter, A., Huang, Z. and Heap, A. (2012) <https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/74030>.
Computes the sit coefficient between two vectors x and y, possibly all paired coefficients for a matrix. The reference for the methods implemented here is Zhang, Yilin, Canyi Chen, and Liping Zhu. 2022. "Sliced Independence Test." Statistica Sinica. <doi:10.5705/ss.202021.0203>. This package incorporates the Galton peas example.
This package provides tools which allow regression variables to be placed on similar scales, offering computational benefits as well as easing interpretation of regression output.