Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cellular population mapping (CPM) a deconvolution algorithm in which single-cell genomics is required in only one or a few samples, where in other samples of the same tissue, only bulk genomics is measured and the underlying fine resolution cellular heterogeneity is inferred.
An exact method for computing the Poisson-Binomial Distribution (PBD). The package provides a function for generating a random sample from the PBD, as well as two distinct approaches for computing the density, distribution, and quantile functions of the PBD. The first method uses direct-convolution, or a dynamic-programming approach which is numerically stable but can be slow for a large input due to its quadratic complexity. The second method is much faster on large inputs thanks to its use of Fast Fourier Transform (FFT) based convolutions. Notably in this case the package uses an exponential shift to practically guarantee the relative accuracy of the computation of an arbitrarily small tail of the PBD -- something that FFT-based methods often struggle with. This ShiftConvolvePoiBin method is described in Peres, Lee and Keich (2020) <arXiv:2004.07429> where it is also shown to be competitive with the fastest implementations for exactly computing the entire Poisson-Binomial distribution.
This package provides a collection of Radix Tree and Trie algorithms for finding similar sequences and calculating sequence distances (Levenshtein and other distance metrics). This work was inspired by a trie implementation in Python: "Fast and Easy Levenshtein distance using a Trie." Hanov (2011) <https://stevehanov.ca/blog/index.php?id=114>.
All data in the book "Statistical Methods in Biology" by Welham et al. (2015) <doi:10.1201/b17336> with a corresponding documentation and illustrative analysis of the data.
This package provides functions for creating and annotating a composite plot in ggplot2'. Offers background themes and shortcut plotting functions that produce figures that are appropriate for the format of scientific journals. Some methods are described in Min and Zhou (2021) <doi:10.3389/fgene.2021.802894>.
Collection of datasets from Sen & Srivastava: "Regression Analysis, Theory, Methods and Applications", Springer. Sources for individual data files are more fully documented in the book.
This package provides a system contains easy-to-use tools as a support for time series analysis courses. In particular, it incorporates a technique called Generalized Method of Wavelet Moments (GMWM) as well as its robust implementation for fast and robust parameter estimation of time series models which is described, for example, in Guerrier et al. (2013) <doi: 10.1080/01621459.2013.799920>. More details can also be found in the paper linked to via the URL below.
Universal and robust algorithm for solving the total alkalinity-pH equation presented in G. Munhoven (2013) <doi:10.5194/gmd-6-1367-2013> and G. Munhoven (2021) <doi:10.5194/gmd-2020-447>. The total alkalinity-pH equation relates total alkalinity and pH for a given set of acid-base concentrations in a given water sample, among which carbonic acid. This package is particularly useful in marine chemistry involving dissolved inorganic carbon. Original package in Fortran can be found at <doi:10.5281/zenodo.4328965>.
Performance analysis workflow that combines the power of the R language (and the tidyverse realm) and many auxiliary tools to provide a consistent, flexible, extensible, fast, and versatile framework for the performance analysis of task-based applications that run on top of the StarPU runtime (with its MPI (Message Passing Interface) layer for multi-node support). Its goal is to provide a fruitful prototypical environment to conduct performance analysis hypothesis-checking for task-based applications that run on heterogeneous (multi-GPU, multi-core) multi-node HPC (High-performance computing) platforms.
Latent space models for multivariate networks (multiplex) estimated via MCMC algorithm. See D Angelo et al. (2018) <arXiv:1803.07166> and D Angelo et al. (2018) <arXiv:1807.03874>.
This package creates ggplot2'-based visualizations of smooth effects from GAM (Generalized Additive Models) fitted with mgcv and spline effects from GLM (Generalized Linear Models). Supports interaction terms and provides hazard ratio plots with histograms for survival analysis. Wood (2017, ISBN:9781498728331) provides comprehensive methodology for generalized additive models.
Estimates the proportion of treatment effect on a censored primary outcome that is explained by the treatment effect on a censored surrogate outcome/event. All methods are described in detail in Parast, et al (2020) "Assessing the Value of a Censored Surrogate Outcome" <doi:10.1007/s10985-019-09473-1> and Wang et al (2025) "Model-free Approach to Evaluate a Censored Intermediate Outcome as a Surrogate for Overall Survival" <doi:10.1002/sim.70268>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogateoutcome>.
This package provides methods for statistical disclosure control in tabular data such as primary and secondary cell suppression as described for example in Hundepol et al. (2012) <doi:10.1002/9781118348239> are covered in this package.
This package provides functions to perform stepwise split regularized regression. The approach first uses a stepwise algorithm to split the variables into the models with a goodness of fit criterion, and then regularization is applied to each model. The weights of the models in the ensemble are determined based on a criterion selected by the user.
Documentation and prototypes for the earliest (circa 2010) open-source effort to reverse engineer the sas7bdat file format. The package includes a prototype reader for sas7bdat files. However, newer packages may contain more robust readers for sas7bdat files.
This package provides functions to perform most of the common analysis in genome association studies are implemented. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Permutation test and related tests (sum statistic and truncated product) are also implemented. Max-statistic and genetic risk-allele score exact distributions are also possible to be estimated. The methods are described in Gonzalez JR et al., 2007 <doi: 10.1093/bioinformatics/btm025>.
Generate data objects from XML versions of the Swiss Register of Plant Protection Products. An online version of the register can be accessed at <https://www.psm.admin.ch/de/produkte>. There is no guarantee of correspondence of the data read in using this package with that online version, or with the original registration documents. Also, the Federal Food Safety and Veterinary Office, coordinating the authorisation of plant protection products in Switzerland, does not answer requests regarding this package.
The estimation method proposed by Chen and Yi (2021) <doi:10.1111/biom.13331> is extended to the analysis of survival data, accommodating commonly used survival models while accounting for measurement error and network structures among covariates.
This package provides tools to compute and analyze the set of statistically-equivalent (Gaussian, linear) path models which generate the input precision or (partial) correlation matrix. This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools. The statistical-equivalence set of a given GGM expresses the uncertainty we have about the sign, size and direction of directed relationships based on the weights matrix of the GGM alone. The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi: 10.31234/osf.io/ryg69>.
This package provides tools for spatially explicit capture-recapture analysis of animal populations in linear habitats, extending package secr'.
An updated and extended version of spm package, by introducing some further novel functions for modern statistical methods (i.e., generalised linear models, glmnet, generalised least squares), thin plate splines, support vector machine, kriging methods (i.e., simple kriging, universal kriging, block kriging, kriging with an external drift), and novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods for spatial predictive modelling. For each method, two functions are provided, with one function for assessing the predictive errors and accuracy of the method based on cross-validation, and the other for generating spatial predictions. It also contains a couple of functions for data preparation and predictive accuracy assessment.
For surface energy models and estimation of solar positions and components with varying topography, time and locations. The functions calculate solar top-of-atmosphere, open, diffuse and direct components, atmospheric transmittance and diffuse factors, day length, sunrise and sunset, solar azimuth, zenith, altitude, incidence, and hour angles, earth declination angle, equation of time, and solar constant. Details about the methods and equations are explained in Seyednasrollah, Bijan, Mukesh Kumar, and Timothy E. Link. On the role of vegetation density on net snow cover radiation at the forest floor. Journal of Geophysical Research: Atmospheres 118.15 (2013): 8359-8374, <doi:10.1002/jgrd.50575>.
Two-step and maximum likelihood estimation of Heckman-type sample selection models: standard sample selection models (Tobit-2), endogenous switching regression models (Tobit-5), sample selection models with binary dependent outcome variable, interval regression with sample selection (only ML estimation), and endogenous treatment effects models. These methods are described in the three vignettes that are included in this package and in econometric textbooks such as Greene (2011, Econometric Analysis, 7th edition, Pearson).
Routines for solving large systems of linear equations and eigenproblems in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB). Dense and sparse problems are supported.