_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-somadataio 6.4.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-readxl@1.4.5 r-magrittr@2.0.4 r-lifecycle@1.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://somalogic.github.io/SomaDataIO/
Licenses: Expat
Synopsis: Input/Output 'SomaScan' Data
Description:

Load and export SomaScan data via the Standard BioTools, Inc. structured text file called an ADAT ('*.adat'). For file format see <https://github.com/SomaLogic/SomaLogic-Data/blob/main/README.md>. The package also exports auxiliary functions for manipulating, wrangling, and extracting relevant information from an ADAT object once in memory.

r-sadists 0.2.5
Propagated dependencies: r-pdqutils@0.1.6 r-orthopolynom@1.0-6.1 r-hypergeo@1.2-14
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/shabbychef/sadists
Licenses: LGPL 3
Synopsis: Some Additional Distributions
Description:

This package provides the density, distribution, quantile and generation functions of some obscure probability distributions, including the doubly non-central t, F, Beta, and Eta distributions; the lambda-prime and K-prime; the upsilon distribution; the (weighted) sum of non-central chi-squares to a power; the (weighted) sum of log non-central chi-squares; the product of non-central chi-squares to powers; the product of doubly non-central F variables; the product of independent normals.

r-silp 1.0.3
Propagated dependencies: r-stringr@1.6.0 r-semtools@0.5-7 r-purrr@1.2.0 r-matrix@1.7-4 r-mass@7.3-65 r-lavaan@0.6-20
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/TomBJJJ/silp
Licenses: Expat
Synopsis: Conditional Process Analysis (CPA) via SEM Approach
Description:

Utilizes the Reliability-Adjusted Product Indicator (RAPI) method to estimate effects among latent variables, thus allowing for more precise definition and analysis of mediation and moderation models. Our simulation studies reveal that while silp may exhibit instability with smaller sample sizes and lower reliability scores (e.g., N = 100, omega = 0.7), implementing nearest positive definite matrix correction and bootstrap confidence interval estimation can significantly ameliorate this volatility. When these adjustments are applied, silp achieves estimations akin in quality to those derived from LMS. In conclusion, the silp package is a valuable tool for researchers seeking to explore complex relational structures between variables without resorting to commercial software. Cheung et al.(2021)<doi:10.1007/s10869-020-09717-0> Hsiao et al.(2018)<doi:10.1177/0013164416679877>.

r-sim2dpredictr 0.1.1
Propagated dependencies: r-tibble@3.3.0 r-spam@2.11-1 r-rdpack@2.6.4 r-matrixcalc@1.0-6 r-mass@7.3-65 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jmleach-bst/sim2Dpredictr
Licenses: GPL 3
Synopsis: Simulate Outcomes Using Spatially Dependent Design Matrices
Description:

This package provides tools for simulating spatially dependent predictors (continuous or binary), which are used to generate scalar outcomes in a (generalized) linear model framework. Continuous predictors are generated using traditional multivariate normal distributions or Gauss Markov random fields with several correlation function approaches (e.g., see Rue (2001) <doi:10.1111/1467-9868.00288> and Furrer and Sain (2010) <doi:10.18637/jss.v036.i10>), while binary predictors are generated using a Boolean model (see Cressie and Wikle (2011, ISBN: 978-0-471-69274-4)). Parameter vectors exhibiting spatial clustering can also be easily specified by the user.

r-scplot 0.6.0
Propagated dependencies: r-scan@0.67.0 r-mblm@0.12.1 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=scplot
Licenses: GPL 3+
Synopsis: Plot Function for Single-Case Data Frames
Description:

Add-on for the scan package that creates plots from single-case data frames ('scdf'). It includes functions for styling single-case plots, adding phase-based lines to indicate various statistical parameters, and predefined themes for presentations and publications. More information and in depth examples can be found in the online book "Analyzing Single-Case Data with R and scan" Jürgen Wilbert (2025) <https://jazznbass.github.io/scan-Book/>.

r-sommer 4.4.4
Propagated dependencies: r-rcppprogress@0.4.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-matrix@1.7-4 r-mass@7.3-65 r-enhancer@1.1.0 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/covaruber/sommer
Licenses: GPL 2+
Synopsis: Solving Mixed Model Equations in R
Description:

Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>; Jensen et al., 1997). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the Henderson-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available.

r-scperf 1.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SCperf
Licenses: GPL 3
Synopsis: Functions for Planning and Managing Inventories in a Supply Chain
Description:

This package implements different inventory models, the bullwhip effect and other supply chain performance variables. Marchena Marlene (2010) <arXiv:1009.3977>.

r-s2net 1.0.7
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jlaria/s2net
Licenses: GPL 2+
Synopsis: The Generalized Semi-Supervised Elastic-Net
Description:

This package implements the generalized semi-supervised elastic-net. This method extends the supervised elastic-net problem, and thus it is a practical solution to the problem of feature selection in semi-supervised contexts. Its mathematical formulation is presented from a general perspective, covering a wide range of models. We focus on linear and logistic responses, but the implementation could be easily extended to other losses in generalized linear models. We develop a flexible and fast implementation, written in C++ using RcppArmadillo and integrated into R via Rcpp modules. See Culp, M. 2013 <doi:10.1080/10618600.2012.657139> for references on the Joint Trained Elastic-Net.

r-seededlda 1.4.3
Dependencies: tbb@2021.6.0
Propagated dependencies: r-testthat@3.3.0 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-quanteda@4.3.1 r-proxyc@0.5.2 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/koheiw/seededlda
Licenses: GPL 3
Synopsis: Seeded Sequential LDA for Topic Modeling
Description:

Seeded Sequential LDA can classify sentences of texts into pre-define topics with a small number of seed words (Watanabe & Baturo, 2023) <doi:10.1177/08944393231178605>. Implements Seeded LDA (Lu et al., 2010) <doi:10.1109/ICDMW.2011.125> and Sequential LDA (Du et al., 2012) <doi:10.1007/s10115-011-0425-1> with the distributed LDA algorithm (Newman, et al., 2009) for parallel computing.

r-shiftconvolvepoibin 1.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=ShiftConvolvePoibin
Licenses: GPL 2+
Synopsis: Exactly Computing the Tail of the Poisson-Binomial Distribution
Description:

An exact method for computing the Poisson-Binomial Distribution (PBD). The package provides a function for generating a random sample from the PBD, as well as two distinct approaches for computing the density, distribution, and quantile functions of the PBD. The first method uses direct-convolution, or a dynamic-programming approach which is numerically stable but can be slow for a large input due to its quadratic complexity. The second method is much faster on large inputs thanks to its use of Fast Fourier Transform (FFT) based convolutions. Notably in this case the package uses an exponential shift to practically guarantee the relative accuracy of the computation of an arbitrarily small tail of the PBD -- something that FFT-based methods often struggle with. This ShiftConvolvePoiBin method is described in Peres, Lee and Keich (2020) <arXiv:2004.07429> where it is also shown to be competitive with the fastest implementations for exactly computing the entire Poisson-Binomial distribution.

r-simode 1.2.2
Propagated dependencies: r-quadprog@1.5-8 r-pracma@2.4.6 r-ncvreg@3.16.0 r-glmnet@4.1-10 r-desolve@1.40
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=simode
Licenses: GPL 2+
Synopsis: Statistical Inference for Systems of Ordinary Differential Equations using Separable Integral-Matching
Description:

This package implements statistical inference for systems of ordinary differential equations, that uses the integral-matching criterion and takes advantage of the separability of parameters, in order to obtain initial parameter estimates for nonlinear least squares optimization. Dattner & Yaari (2018) <arXiv:1807.04202>. Dattner et al. (2017) <doi:10.1098/rsif.2016.0525>. Dattner & Klaassen (2015) <doi:10.1214/15-EJS1053>.

r-skpr 1.9.2
Propagated dependencies: r-viridis@0.6.5 r-survival@3.8-3 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-progressr@0.18.0 r-progress@1.2.3 r-magrittr@2.0.4 r-lmertest@3.1-3 r-lme4@1.1-37 r-iterators@1.0.14 r-geometry@0.5.2 r-future@1.68.0 r-foreach@1.5.2 r-dorng@1.8.6.2 r-doparallel@1.0.17 r-dofuture@1.1.2 r-digest@0.6.39 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tylermorganwall/skpr
Licenses: GPL 3
Synopsis: Design of Experiments Suite: Generate and Evaluate Optimal Designs
Description:

Generates and evaluates D, I, A, Alias, E, T, and G optimal designs. Supports generation and evaluation of blocked and split/split-split/.../N-split plot designs. Includes parametric and Monte Carlo power evaluation functions, and supports calculating power for censored responses. Provides a framework to evaluate power using functions provided in other packages or written by the user. Includes a Shiny graphical user interface that displays the underlying code used to create and evaluate the design to improve ease-of-use and make analyses more reproducible. For details, see Morgan-Wall et al. (2021) <doi:10.18637/jss.v099.i01>.

r-sales 1.0.2
Propagated dependencies: r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/knightgu/SALES
Licenses: GPL 2+
Synopsis: The (Adaptive) Elastic Net and Lasso Penalized Sparse Asymmetric Least Squares (SALES) and Coupled Sparse Asymmetric Least Squares (COSALES) using Coordinate Descent and Proximal Gradient Algorithms
Description:

This package provides a coordinate descent algorithm for computing the solution paths of the sparse and coupled sparse asymmetric least squares, including the (adaptive) elastic net and Lasso penalized SALES and COSALES regressions.

r-samur 1.1
Propagated dependencies: r-matching@4.10-15
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SAMUR
Licenses: GPL 2+
Synopsis: Stochastic Augmentation of Matched Data Using Restriction Methods
Description:

Augmenting a matched data set by generating multiple stochastic, matched samples from the data using a multi-dimensional histogram constructed from dropping the input matched data into a multi-dimensional grid built on the full data set. The resulting stochastic, matched sets will likely provide a collectively higher coverage of the full data set compared to the single matched set. Each stochastic match is without duplication, thus allowing downstream validation techniques such as cross-validation to be applied to each set without concern for overfitting.

r-saehb-panel-beta 0.1.5
Dependencies: jags@4.3.1
Propagated dependencies: r-stringr@1.6.0 r-rjags@4-17 r-dplyr@1.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/DianRahmawatiSalis/saeHB.panel.beta
Licenses: GPL 3
Synopsis: Small Area Estimation using HB for Rao Yu Model under Beta Distribution
Description:

Several functions are provided for small area estimation at the area level using the hierarchical bayesian (HB) method with panel data under beta distribution for variable interest. This package also provides a dataset produced by data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators, which include the mean and the variation of the mean. For the reference, see Rao and Molina (2015, ISBN: 978-1-118-73578-7).

r-skedastic 2.0.3
Propagated dependencies: r-slam@0.1-55 r-roi-plugin-qpoases@1.0-3 r-roi@1.0-1 r-rfast@2.1.5.2 r-rdpack@2.6.4 r-quadprogxt@0.0.6 r-quadprog@1.5-8 r-pracma@2.4.6 r-osqp@0.6.3.3 r-mgcv@1.9-4 r-matrix@1.7-4 r-mass@7.3-65 r-inflection@1.3.7 r-compquadform@1.4.4 r-caret@7.0-1 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tjfarrar/skedastic
Licenses: Expat
Synopsis: Handling Heteroskedasticity in the Linear Regression Model
Description:

This package implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <doi:10.48550/arXiv.0810.2124>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

r-sarp-snowprofile-pyface 0.4.3
Propagated dependencies: r-sarp-snowprofile@1.3.2 r-reticulate@1.44.1 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://www.avalancheresearch.ca
Licenses: CC-BY-SA 4.0
Synopsis: 'python' Modules from Snowpack and Avalanche Research
Description:

The development of post-processing functionality for simulated snow profiles by the snow and avalanche community is often done in python'. This package aims to make some of these tools accessible to R users. Currently integrated modules contain functions to calculate dry snow layer instabilities in support of avalache hazard assessments following the publications of Richter, Schweizer, Rotach, and Van Herwijnen (2019) <doi:10.5194/tc-13-3353-2019>, and Mayer, Van Herwijnen, Techel, and Schweizer (2022) <doi:10.5194/tc-2022-34>.

r-sftools 0.1.0
Propagated dependencies: r-wordspace@0.2-9 r-ff@4.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://sites.google.com/site/mohamedlaibwebpage/
Licenses: GPL 3
Synopsis: Space Filling Based Tools for Data Mining
Description:

This package contains space filling based tools for machine learning and data mining. Some functions offer several computational techniques and deal with the out of memory for large big data by using the ff package.

r-scdha 1.2.3
Propagated dependencies: r-uwot@0.2.4 r-torch@0.16.3 r-rhpcblasctl@0.23-42 r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcppannoy@0.0.22 r-rcpp@1.1.0 r-matrixstats@1.5.0 r-matrix@1.7-4 r-igraph@2.2.1 r-foreach@1.5.2 r-doparallel@1.0.17 r-coro@1.1.0 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/duct317/scDHA
Licenses: GPL 3
Synopsis: Single-Cell Decomposition using Hierarchical Autoencoder
Description:

This package provides a fast and accurate pipeline for single-cell analyses. The scDHA software package can perform clustering, dimension reduction and visualization, classification, and time-trajectory inference on single-cell data (Tran et.al. (2021) <DOI:10.1038/s41467-021-21312-2>).

r-simcorrmix 0.1.1
Propagated dependencies: r-vgam@1.1-13 r-triangle@1.0 r-simmulticorrdata@0.2.2 r-nleqslv@3.3.5 r-mvtnorm@1.3-3 r-matrix@1.7-4 r-mass@7.3-65 r-ggplot2@4.0.1 r-bb@2019.10-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/AFialkowski/SimCorrMix
Licenses: GPL 2
Synopsis: Simulation of Correlated Data with Multiple Variable Types Including Continuous and Count Mixture Distributions
Description:

Generate continuous (normal, non-normal, or mixture distributions), binary, ordinal, and count (regular or zero-inflated, Poisson or Negative Binomial) variables with a specified correlation matrix, or one continuous variable with a mixture distribution. This package can be used to simulate data sets that mimic real-world clinical or genetic data sets (i.e., plasmodes, as in Vaughan et al., 2009 <DOI:10.1016/j.csda.2008.02.032>). The methods extend those found in the SimMultiCorrData R package. Standard normal variables with an imposed intermediate correlation matrix are transformed to generate the desired distributions. Continuous variables are simulated using either Fleishman (1978)'s third order <DOI:10.1007/BF02293811> or Headrick (2002)'s fifth order <DOI:10.1016/S0167-9473(02)00072-5> polynomial transformation method (the power method transformation, PMT). Non-mixture distributions require the user to specify mean, variance, skewness, standardized kurtosis, and standardized fifth and sixth cumulants. Mixture distributions require these inputs for the component distributions plus the mixing probabilities. Simulation occurs at the component level for continuous mixture distributions. The target correlation matrix is specified in terms of correlations with components of continuous mixture variables. These components are transformed into the desired mixture variables using random multinomial variables based on the mixing probabilities. However, the package provides functions to approximate expected correlations with continuous mixture variables given target correlations with the components. Binary and ordinal variables are simulated using a modification of ordsample() in package GenOrd'. Count variables are simulated using the inverse CDF method. There are two simulation pathways which calculate intermediate correlations involving count variables differently. Correlation Method 1 adapts Yahav and Shmueli's 2012 method <DOI:10.1002/asmb.901> and performs best with large count variable means and positive correlations or small means and negative correlations. Correlation Method 2 adapts Barbiero and Ferrari's 2015 modification of the GenOrd package <DOI:10.1002/asmb.2072> and performs best under the opposite scenarios. The optional error loop may be used to improve the accuracy of the final correlation matrix. The package also contains functions to calculate the standardized cumulants of continuous mixture distributions, check parameter inputs, calculate feasible correlation boundaries, and summarize and plot simulated variables.

r-smacof 2.1-7
Propagated dependencies: r-wordcloud@2.6 r-weights@1.1.2 r-polynom@1.4-1 r-plotrix@3.8-13 r-nnls@1.6 r-mass@7.3-65 r-hmisc@5.2-4 r-foreach@1.5.2 r-ellipse@0.5.0 r-e1071@1.7-16 r-doparallel@1.0.17 r-colorspace@2.1-2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=smacof
Licenses: GPL 3
Synopsis: Multidimensional Scaling
Description:

This package implements the following approaches for multidimensional scaling (MDS) based on stress minimization using majorization (smacof): ratio/interval/ordinal/spline MDS on symmetric dissimilarity matrices, MDS with external constraints on the configuration, individual differences scaling (idioscal, indscal), MDS with spherical restrictions, and ratio/interval/ordinal/spline unfolding (circular restrictions, row-conditional). Various tools and extensions like jackknife MDS, bootstrap MDS, permutation tests, MDS biplots, gravity models, unidimensional scaling, drift vectors (asymmetric MDS), classical scaling, and Procrustes are implemented as well.

r-semeffect 1.2.3
Propagated dependencies: r-tidyr@1.3.1 r-rcolorbrewer@1.1-3 r-plspm@0.6.0 r-piecewisesem@2.3.1 r-lavaan@0.6-20 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-checkmate@2.3.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/PhDMeiwp/semEffect/
Licenses: GPL 3
Synopsis: Structural Equation Model Effect Analysis and Visualization
Description:

This package provides standardized effect decomposition (direct, indirect, and total effects) for three major structural equation modeling frameworks: lavaan', piecewiseSEM', and plspm'. Automatically handles zero-effect variables, generates publication-ready ggplot2 visualizations, and returns both wide-format and long-format effect tables. Supports effect filtering, multi-model object inputs, and customizable visualization parameters. For a general overview of the methods used in this package, see Rosseel (2012) <doi:10.18637/jss.v048.i02> and Lefcheck (2016) <doi:10.1111/2041-210X.12512>.

r-spfsr 2.0.4
Propagated dependencies: r-tictoc@1.2.1 r-ranger@0.17.0 r-mlr3pipelines@0.10.0 r-mlr3learners@0.13.0 r-mlr3@1.2.0 r-lgr@0.5.0 r-ggplot2@4.0.1 r-future@1.68.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.featureranking.com/
Licenses: GPL 3
Synopsis: Feature Selection and Ranking via Simultaneous Perturbation Stochastic Approximation
Description:

An implementation of feature selection, weighting and ranking via simultaneous perturbation stochastic approximation (SPSA). The SPSA-FSR algorithm searches for a locally optimal set of features that yield the best predictive performance using some error measures such as mean squared error (for regression problems) and accuracy rate (for classification problems).

r-shannon 0.2.0
Propagated dependencies: r-vares@1.0.2 r-extradistr@1.10.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shannon
Licenses: GPL 2
Synopsis: Computation of Entropy Measures and Relative Loss
Description:

The functions allow for the numerical evaluation of some commonly used entropy measures, such as Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, at selected parametric values from several well-known and widely used probability distributions. Moreover, the functions also compute the relative loss of these entropies using the truncated distributions. Related works include: Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148. <doi:10.1093/imamci/4.2.143>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
Total results: 21208