Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analyse light spectra for visual and non-visual (often called melanopic) needs, wrapped up in a Shiny App. Spectran allows for the import of spectra in various CSV forms but also provides a wide range of example spectra and even the creation of own spectral power distributions. The goal of the app is to provide easy access and a visual overview of the spectral calculations underlying common parameters used in the field. It is thus ideal for educational purposes or the creation of presentation ready graphs in lighting research and application. Spectran uses equations and action spectra described in CIE S026 (2018) <doi:10.25039/S026.2018>, DIN/TS 5031-100 (2021) <doi:10.31030/3287213>, and ISO/CIE 23539 (2023) <doi:10.25039/IS0.CIE.23539.2023>.
This package provides a collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015 <doi: 10.1007/s10109-015-0213-7>). The implemented models include linear regression with residual spatial dependence, spatially/spatio-temporally varying coefficient models (Murakami et al., 2017, 2024; <doi:10.1016/j.spasta.2016.12.001>,<doi:10.48550/arXiv.2410.07229>), spatially filtered unconditional quantile regression (Murakami and Seya, 2019 <doi:10.1002/env.2556>), Gaussian and non-Gaussian spatial mixed models through compositionally-warping (Murakami et al. 2021, <doi:10.1016/j.spasta.2021.100520>).
Implementations of the Single Transferable Vote counting system. By default, it uses the Cambridge method for surplus allocation and Droop method for quota calculation. Fractional surplus allocation and the Hare quota are available as options.
This package provides a simple HTTP server allows to connect GUI clients to R.
Run SQL queries across Snowflake', Amazon Redshift', PostgreSQL', SQLite', and DuckDB from R with a single function. Optionally stream and cache large query results to a local DuckDB database for efficient work with larger-than-memory datasets.
This package provides computational tools for estimating inverse regions and constructing the corresponding simultaneous outer and inner confidence regions. Acceptable input includes both one-dimensional and two-dimensional data for linear, logistic, functional, and spatial generalized least squares regression models. Functions are also available for constructing simultaneous confidence bands (SCBs) for these models. The definition of simultaneous confidence regions (SCRs) follows Sommerfeld et al. (2018) <doi:10.1080/01621459.2017.1341838>. Methods for estimating inverse regions, SCRs, and the nonparametric bootstrap are based on Ren et al. (2024) <doi:10.1093/jrsssc/qlae027>. Methods for constructing SCBs are described in Crainiceanu et al. (2024) <doi:10.1201/9781003278726> and Telschow et al. (2022) <doi:10.1016/j.jspi.2021.05.008>.
Retrieves the most important data on parliamentary activities of the Swiss Federal Assembly via an open, machine-readable interface (see <https://ws.parlament.ch/odata.svc/>).
Fork of vote_2.3-2', Raftery et al. (2021) <DOI:10.32614/RJ-2021-086>, with additional support for stochastic experimentation.
This package provides an implementation of simultaneous tolerance bounds (STB), useful for checking whether a numeric vector fits to a hypothetical null-distribution or not. Furthermore, there are functions for computing STB (bands, intervals) for random variates of linear mixed models fitted with package VCA'. All kinds of, possibly transformed (studentized, standardized, Pearson-type transformed) random variates (residuals, random effects), can be assessed employing STB-methodology.
This package provides functions implementing Single Source of Error state space models for purposes of time series analysis and forecasting. The package includes ADAM (Svetunkov, 2023, <https://openforecast.org/adam/>), Exponential Smoothing (Hyndman et al., 2008, <doi:10.1007/978-3-540-71918-2>), SARIMA (Svetunkov & Boylan, 2019 <doi: 10.1080/00207543.2019.1600764>), Complex Exponential Smoothing (Svetunkov & Kourentzes, 2018, <doi:10.13140/RG.2.2.24986.29123>), Simple Moving Average (Svetunkov & Petropoulos, 2018 <doi:10.1080/00207543.2017.1380326>) and several simulation functions. It also allows dealing with intermittent demand based on the iETS framework (Svetunkov & Boylan, 2019, <doi:10.13140/RG.2.2.35897.06242>).
This package provides a flexible moving average algorithm for modeling drug exposure in pharmacoepidemiology studies as presented in the article: Ouchi, D., Giner-Soriano, M., Gómez-Lumbreras, A., Vedia Urgell, C.,Torres, F., & Morros, R. (2022). "Automatic Estimation of the Most Likely Drug Combination in Electronic Health Records Using the Smooth Algorithm : Development and Validation Study." JMIR medical informatics, 10(11), e37976. <doi:10.2196/37976>.
Develop outstanding shiny apps for iOS and Android as well as beautiful shiny gadgets. shinyMobile is built on top of the latest Framework7 template <https://framework7.io>. Discover 14 new input widgets (sliders, vertical sliders, stepper, grouped action buttons, toggles, picker, smart select, ...), 2 themes (light and dark), 12 new widgets (expandable cards, badges, chips, timelines, gauges, progress bars, ...) combined with the power of server-side notifications such as alerts, modals, toasts, action sheets, sheets (and more) as well as 3 layouts (single, tabs and split).
Character vector to numerical translation in Euros from Spanish spelled monetary quantities. Reverse translation from integer to Spanish. Upper limit is up to the millions range. Geocoding via Cadastral web site.
This package provides functions to estimate a strategic selection estimator. A strategic selection estimator is an agent error model in which the two random components are not assumed to be orthogonal. In addition this package provides generic functions to print and plot objects of its class as well as the necessary functions to create tables for LaTeX. There is also a function to create dyadic data sets.
The package performs a sensitivity analysis in an observational study using an M-statistic, for instance, the mean. The main function in the package is senmv(), but amplify() and truncatedP() are also useful. The method is developed in Rosenbaum Biometrics, 2007, 63, 456-464, <doi:10.1111/j.1541-0420.2006.00717.x>.
Conducting Bayesian Optimal Interval (BOIN) design for phase I dose-finding trials. simFastBOIN provides functions for pre-computing decision tables, conducting trial simulations, and evaluating operating characteristics. The package uses vectorized operations and the Iso::pava() function for isotonic regression to achieve efficient performance while maintaining full compatibility with BOIN methodology. Version 1.3.2 adds p_saf and p_tox parameters for customizable safety and toxicity thresholds. Version 1.3.1 fixes Date field. Version 1.2.1 adds comprehensive roxygen2 documentation and enhanced print formatting with flexible table output options. Version 1.2.0 integrated C-based PAVA for isotonic regression. Version 1.1.0 introduced conservative MTD selection (boundMTD) and flexible early stopping rules (n_earlystop_rule). Methods are described in Liu and Yuan (2015) <doi:10.1111/rssc.12089>.
Empirical likelihood methods for asymptotically efficient estimation of models based on conditional or unconditional moment restrictions; see Kitamura, Tripathi & Ahn (2004) <doi:10.1111/j.1468-0262.2004.00550.x> and Owen (2013) <doi:10.1002/cjs.11183>. Kernel-based non-parametric methods for density/regression estimation and numerical routines for empirical likelihood maximisation are implemented in Rcpp for speed.
The Scott-Knott Effect Size Difference (ESD) test is a mean comparison approach that leverages a hierarchical clustering to partition the set of treatment means (e.g., means of variable importance scores, means of model performance) into statistically distinct groups with non-negligible difference [Tantithamthavorn et al., (2018) <doi:10.1109/TSE.2018.2794977>].
We have designed this package to address experimental scenarios involving multiple covariates. It focuses on construction of Optimal Covariate Designs (OCDs), checking space filling property of the developed design. The primary objective of the package is to generate OCDs using four methods viz., M array method, Juxtapose method, Orthogonal Integer Array and Hadamard method. The package also evaluates space filling properties of both the base design and OCDs using the MaxPro criterion, providing a meaningful basis for comparison. In addition, it includes tool to visualize the spread offered by the design points in the form of scatterplot, which help users to assess distribution and coverage of design points.
This package creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.
Includes bases for litholog generation: graphical functions based on R base graphics, interval management functions and svg importation functions among others. Also include stereographic projection functions, and other functions made to deal with large datasets while keeping options to get into the details of the data. When using for publication please cite Sebastien Wouters, Anne-Christine Da Silva, Frederic Boulvain and Xavier Devleeschouwer, 2021. The R Journal 13:2, 153-178. The palaeomagnetism functions are based on: Tauxe, L., 2010. Essentials of Paleomagnetism. University of California Press. <https://earthref.org/MagIC/books/Tauxe/Essentials/>; Allmendinger, R. W., Cardozo, N. C., and Fisher, D., 2013, Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 pp.; Cardozo, N., and Allmendinger, R. W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, no. 0, p. 193 - 205, <doi: 10.1016/j.cageo.2012.07.021>.
Automated unit testing of Shiny applications through a headless Chromium browser.
There are four categories of Phase III clinical trials according to different research goals, including (1) Testing for equality, (2) Superiority trial, (3) Non-inferiority trial, and (4) Equivalence trial. This package aims to help researchers to calculate sample size when comparing means or proportions in Phase III clinical trials with different research goals.
This package implements a thresholded version of the Sliced Inverse Regression method (Li, K. C. (1991) <doi:10.2307/2290563>), which allows to do variable selection.