Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The spork syntax describes label formatting concisely, supporting mixed nesting of subscripts and superscripts to arbitrary depth. It intends to be easy to read and write in plain text, and easy to convert to equivalent presentations in plotmath', latex', and html'. Greek symbols and a multiplication symbol are explicitly supported. See ?as_spork and ?as_previews.
Normalization based a subset of negative control probes as described in Subset quantile normalization using negative control features'. Wu Z, Aryee MJ, J Comput Biol. 2010 Oct;17(10):1385-95 [PMID 20976876].
R client and utilities for Seven Bridges Platform API, from Cancer Genomics Cloud to other Seven Bridges supported platforms. API documentation is hosted publicly at <https://docs.sevenbridges.com/docs/the-api>.
In Switzerland, the landscape of municipalities is changing rapidly mainly due to mergers. The Swiss Municipal Data Merger Tool automatically detects these mutations and maps municipalities over time, i.e. municipalities of an old state to municipalities of a new state. This functionality is helpful when working with datasets that are based on different spatial references. The package's idea and use case is discussed in the following article: <doi:10.1111/spsr.12487>.
Facilitate extraction of key information from common datasets.
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
Stop signal task data of go and stop trials is generated per participant. The simulation process is based on the generally non-independent horse race model and fixed stop signal delay or tracking method. Each of go and stop process is assumed having exponentially modified Gaussian(ExG) or Shifted Wald (SW) distributions. The output data can be converted to BEESTS software input data enabling researchers to test and evaluate various brain stopping processes manifested by ExG or SW distributional parameters of interest. Methods are described in: Soltanifar M (2020) <https://hdl.handle.net/1807/101208>, Matzke D, Love J, Wiecki TV, Brown SD, Logan GD and Wagenmakers E-J (2013) <doi:10.3389/fpsyg.2013.00918>, Logan GD, Van Zandt T, Verbruggen F, Wagenmakers EJ. (2014) <doi:10.1037/a0035230>.
This package provides tools to simulate multi-omics datasets with predefined signal structures. The generated data can be used for testing, validating, and benchmarking integrative analysis methods such as factor models and clustering approaches. This version includes enhanced signal customization, visualization tools (scatter, histogram, 3D), MOFA-based analysis pipelines, PowerPoint export, and statistical profiling of datasets. Designed for both method development and teaching, SUMO supports real and synthetic data pipelines with interpretable outputs. Tini, Giulia, et al (2019) <doi:10.1093/bib/bbx167>.
Characterize daily stream discharge and water quality data and subsample water quality data. Provide dates, discharge, and water quality measurements and streamsampler can find gaps, get summary statistics, and subsample according to common stream sampling protocols. Stream sampling protocols are described in Lee et al. (2016) <doi:10.1016/j.jhydrol.2016.08.059> and Lee et al. (2019) <doi:10.3133/sir20195084>.
Estimate the size of a networked population based on respondent-driven sampling data. The package is part of the "RDS Analyst" suite of packages for the analysis of respondent-driven sampling data. See Handcock, Gile and Mar (2014) <doi:10.1214/14-EJS923>, Handcock, Gile and Mar (2015) <doi:10.1111/biom.12255>, Kim and Handcock (2021) <doi:10.1093/jssam/smz055>, and McLaughlin, et. al. (2023) <doi:10.1214/23-AOAS1807>.
This package provides a facility to generate balanced semi-Latin rectangles with any cell size (preferably up to ten) with given number of treatments, see Uto, N.P. and Bailey, R.A. (2020). "Balanced Semi-Latin rectangles: properties, existence and constructions for block size two". Journal of Statistical Theory and Practice, 14(3), 1-11, <doi:10.1007/s42519-020-00118-3>. It also provides facility to generate partially balanced semi-Latin rectangles for cell size 2, 3 and 4 for any number of treatments.
Predicts the presence of signal peptides in eukaryotic protein using hidden semi-Markov models. The implemented algorithm can be accessed from both the command line and GUI.
Shiny wrappers for the RGL package. This package exposes RGL's ability to export WebGL visualization in a shiny-friendly format.
This package creates a contextual menu that can be triggered with keyboard shortcuts or programmatically. This can replace traditional sidebars or navigation bars, thereby enhancing the user experience with lighter user interfaces.
The goal of SAFEPG is to predict climate-related extreme losses by fitting a frequency-severity model. It improves predictive performance by introducing a sign-aligned regularization term, which ensures consistent signs for the coefficients across the frequency and severity components. This enhancement not only increases model accuracy but also enhances its interpretability, making it more suitable for practical applications in risk assessment.
Aims to quantify time intensity data by using sigmoidal and double sigmoidal curves. It fits straight lines, sigmoidal, and double sigmoidal curves on to time vs intensity data. Then all the fits are used to make decision on which model best describes the data. This method was first developed in the context of single-cell viral growth analysis (for details, see Caglar et al. (2018) <doi:10.7717/peerj.4251>), and the package name stands for "SIngle CEll Growth Analysis in R".
Fits Bayesian hierarchical spatial and spatial-temporal process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2025) <doi:10.1080/01621459.2025.2566449>, and, Pan, Zhang, Bradley, and Banerjee (2025) <doi:10.48550/arXiv.2406.04655> for details.
Used to construct the URLs and parameters of Socrata Open Data API <https://dev.socrata.com> calls, using the API's SoQL parameter format. Has method-chained and sensical syntax. Plays well with pipes.
R interface to Apache Spark, a fast and general engine for big data processing, see <https://spark.apache.org/>. This package supports connecting to local and remote Apache Spark clusters, provides a dplyr compatible back-end, and provides an interface to Spark's built-in machine learning algorithms.
This package provides a Bayesian semiparametric Dirichlet process mixtures to estimate correlated receiver operating characteristic (ROC) surfaces and the associated volume under the surface (VUS) with stochastic order constraints. The reference paper is:Zhen Chen, Beom Seuk Hwang, (2018) "A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints". Biometrics, 75, 539-550. <doi:10.1111/biom.12997>.
Allows the user to estimate a vector logistic smooth transition autoregressive model via maximum log-likelihood or nonlinear least squares. It further permits to test for linearity in the multivariate framework against a vector logistic smooth transition autoregressive model with a single transition variable. The estimation method is discussed in Terasvirta and Yang (2014, <doi:10.1108/S0731-9053(2013)0000031008>). Also, realized covariances can be constructed from stock market prices or returns, as explained in Andersen et al. (2001, <doi:10.1016/S0304-405X(01)00055-1>).
This package creates D3 JavaScript scatterplots from R with interactive features : panning, zooming, tooltips, etc.
This package contains functions to perform various models and methods for test equating (Kolen and Brennan, 2014 <doi:10.1007/978-1-4939-0317-7> ; Gonzalez and Wiberg, 2017 <doi:10.1007/978-3-319-51824-4> ; von Davier et. al, 2004 <doi:10.1007/b97446>). It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.
This package provides movies to help students to understand statistical concepts. The rpanel package <https://cran.r-project.org/package=rpanel> is used to create interactive plots that move to illustrate key statistical ideas and methods. There are movies to: visualise probability distributions (including user-supplied ones); illustrate sampling distributions of the sample mean (central limit theorem), the median, the sample maximum (extremal types theorem) and (the Fisher transformation of the) product moment correlation coefficient; examine the influence of an individual observation in simple linear regression; illustrate key concepts in statistical hypothesis testing. Also provided are dpqr functions for the distribution of the Fisher transformation of the correlation coefficient under sampling from a bivariate normal distribution.