Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows users to list data structures using path-based navigation. Provides intuitive methods for storing, accessing, and manipulating nested data through simple path strings. Key features include strict mode validation, path existence checking, recursive operations, and automatic parent-level creation. Designed for use cases requiring organized storage of complex nested data while maintaining simple access patterns. Particularly useful for configuration management, nested settings, and any application where data naturally forms a tree-like structure.
Convert a time series of observations to a time series of standardised indices that can be used to monitor variables on a common and probabilistically interpretable scale. The indices can be aggregated and rescaled to different time scales, visualised using plot capabilities, and calculated using a range of distributions. This includes flexible non-parametric and non-stationary methods.
Given raster files directly downloaded from various websites, it generates a raster structure where it merges them if they are tiles of the same scene and classifies them according to their spectral and spatial resolution for easy access by name.
This package provides several methods to integrate functions over the unit sphere and ball in n-dimensional Euclidean space. Routines for converting to/from multivariate polar/spherical coordinates are also provided.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
Univariate time series forecasting with STL decomposition based Extreme Learning Machine hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
This package provides functions that calculate appropriate sample sizes for one-sample t-tests, two-sample t-tests, and F-tests for microarray experiments based on desired power while controlling for false discovery rates. For all tests, the standard deviations (variances) among genes can be assumed fixed or random. This is also true for effect sizes among genes in one-sample and two sample experiments. Functions also output a chart of power versus sample size, a table of power at different sample sizes, and a table of critical test values at different sample sizes.
This package provides functions for self-determination motivation theory (SDT) to compute measures of motivation internalization, motivation simplex structure, and of the original and adjusted self-determination or relative autonomy index. SDT was introduced by Deci and Ryan (1985) <doi:10.1007/978-1-4899-2271-7>. See package?SDT for an overview.
This package implements the SPCAvRP algorithm, developed and analysed in "Sparse principal component analysis via random projections" Gataric, M., Wang, T. and Samworth, R. J. (2018) <arXiv:1712.05630>. The algorithm is based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix.
Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (GÃ E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear GÃ E interactions simultaneously (Ren et al. (2020) <doi:10.1002/sim.8434>). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.
This package provides tools for processing and evaluating seasonal weather forecasts, with an emphasis on tercile forecasts. We follow the World Meteorological Organization's "Guidance on Verification of Operational Seasonal Climate Forecasts", S.J.Mason (2018, ISBN: 978-92-63-11220-0, URL: <https://library.wmo.int/idurl/4/56227>). The development was supported by the European Unionâ s Horizon 2020 research and innovation programme under grant agreement no. 869730 (CONFER). A comprehensive online tutorial is available at <https://seasonalforecastingengine.github.io/SeaValDoc/>.
This package provides tools for retrieving, organizing, and analyzing environmental data from the System Wide Monitoring Program of the National Estuarine Research Reserve System <https://cdmo.baruch.sc.edu/>. These tools address common challenges associated with continuous time series data for environmental decision making.
Implementation of the family of generalised age-period-cohort stochastic mortality models. This family of models encompasses many models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.2307/2290201> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. It includes functions for fitting mortality models, analysing their goodness-of-fit and performing mortality projections and simulations.
This package provides tools for accessing and processing datasets prepared by the Foundation SmarterPoland.pl. Among all: access to API of Google Maps, Central Statistical Office of Poland, MojePanstwo, Eurostat, WHO and other sources.
This package creates ggplot2'-based visualizations of smooth effects from GAM (Generalized Additive Models) fitted with mgcv and spline effects from GLM (Generalized Linear Models). Supports interaction terms and provides hazard ratio plots with histograms for survival analysis. Wood (2017, ISBN:9781498728331) provides comprehensive methodology for generalized additive models.
This package provides crop yield and meteorological data for Ontario, Canada. Includes functions for fitting and predicting data using spatio-temporal models, as well as tools for visualizing the results. The package builds upon existing R packages, including copula (Hofert et al., 2025) <doi:10.32614/CRAN.package.copula>, and bsts (Scott, 2024) <doi:10.32614/CRAN.package.bsts>.
Main properties and regression procedures using a generalization of the Dirichlet distribution called Simplicial Generalized Beta distribution. It is a new distribution on the simplex (i.e. on the space of compositions or positive vectors with sum of components equal to 1). The Dirichlet distribution can be constructed from a random vector of independent Gamma variables divided by their sum. The SGB follows the same construction with generalized Gamma instead of Gamma variables. The Dirichlet exponents are supplemented by an overall shape parameter and a vector of scales. The scale vector is itself a composition and can be modeled with auxiliary variables through a log-ratio transformation. Graf, M. (2017, ISBN: 978-84-947240-0-8). See also the vignette enclosed in the package.
This package provides functions used in courses taught by Dr. Small at Drew University.
An implementation of the stratification index proposed by Zhou (2012) <DOI:10.1177/0081175012452207>. The package provides two functions, srank, which returns stratum-specific information, including population share and average percentile rank; and strat, which returns the stratification index and its approximate standard error. When a grouping factor is specified, strat also provides a detailed decomposition of the overall stratification into between-group and within-group components.
Uses simulation to create prediction intervals for post-policy outcomes in interrupted time series (ITS) designs, following Miratrix (2020) <arXiv:2002.05746>. This package provides methods for fitting ITS models with lagged outcomes and variables to account for temporal dependencies. It then conducts inference via simulation, simulating a set of plausible counterfactual post-policy series to compare to the observed post-policy series. This package also provides methods to visualize such data, and also to incorporate seasonality models and smoothing and aggregation/summarization. This work partially funded by Arnold Ventures in collaboration with MDRC.
Estimation of robust estimators for multi-group and spatial data including the casewise robust Spatially Smoothed Minimum Regularized Determinant (ssMRCD) estimator and its usage for local outlier detection as described in Puchhammer and Filzmoser (2023) <doi:10.1080/10618600.2023.2277875> as well as for sparse robust PCA for multi-source data described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2407.16299>. Moreover, a cellwise robust multi-group Gaussian mixture model (MG-GMM) is implemented as described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2504.02547>. Included are also complementary visualization and parameter tuning tools.
This package provides functions to speed up the exploratory analysis of simple datasets using dplyr'. Functions are provided to do the common tasks of calculating confidence intervals.
We build an Susceptible-Infectious-Recovered (SIR) model where the rate of infection is the sum of the household rate and the community rate. We estimate the posterior distribution of the parameters using the Metropolis algorithm. Further details may be found in: F Scott Dahlgren, Ivo M Foppa, Melissa S Stockwell, Celibell Y Vargas, Philip LaRussa, Carrie Reed (2021) "Household transmission of influenza A and B within a prospective cohort during the 2013-2014 and 2014-2015 seasons" <doi:10.1002/sim.9181>.
Sometimes it is handy to be able to view an image file on an R graphics device. This package just does that. Currently it supports PNG files.