Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of sample datasets on various fields such as automotive performance and safety data to historical demographics and socioeconomic indicators, as well as recreational data. It serves as a resource for researchers and analysts seeking to perform analyses and derive insights from classic data sets in R.
Simulate, solve state space models.
This package implements a spatially varying change point model with unique intercepts, slopes, variance intercepts and slopes, and change points at each location. Inference is within the Bayesian setting using Markov chain Monte Carlo (MCMC). The response variable can be modeled as Gaussian (no nugget), probit or Tobit link and the five spatially varying parameter are modeled jointly using a multivariate conditional autoregressive (MCAR) prior. The MCAR is a unique process that allows for a dissimilarity metric to dictate the local spatial dependencies. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in the corresponding paper published in Spatial Statistics by Berchuck et al (2019): "A spatially varying change points model for monitoring glaucoma progression using visual field data", <doi:10.1016/j.spasta.2019.02.001>.
Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. <doi:10.1101/2021.04.27.21256104>.
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Calculate superior identification index and its extensions. Measure the performance of journals based on how well they could identify the top papers by any index (e.g. citation indices) according to Huang & Yang. (2022) <doi:10.1007/s11192-022-04372-z>. These methods could be extended to evaluate other entities such as institutes, countries, etc.
Combines information from two independent surveys using a model-assisted projection method. Designed for survey sampling scenarios where a large sample collects only auxiliary information (Survey 1) and a smaller sample provides data on both variables of interest and auxiliary variables (Survey 2). Implements a working model to generate synthetic values of the variable of interest by fitting the model to Survey 2 data and predicting values for Survey 1 based on its auxiliary variables (Kim & Rao, 2012) <doi:10.1093/biomet/asr063>.
This package performs estimation and testing of the treatment effect in a 2-group randomized clinical trial with a quantitative, dichotomous, or right-censored time-to-event endpoint. The method improves efficiency by leveraging baseline predictors of the endpoint. The inverse probability weighting technique of Robins, Rotnitzky, and Zhao (JASA, 1994) is used to provide unbiased estimation when the endpoint is missing at random.
This package provides a switch-case construct for R', as it is known from other programming languages. It allows to test multiple, similar conditions in an efficient, easy-to-read manner, so nested if-else constructs can be avoided. The switch-case construct is designed as an R function that allows to return values depending on which condition is met and lets the programmer flexibly decide whether or not to leave the switch-case construct after a case block has been executed.
This package provides a set of tools for writing and sharing interactive courses to be used with swirl.
An assortment of helper functions for doing structural equation modeling, mainly by lavaan for now. Most of them are time-saving functions for common tasks in doing structural equation modeling and reading the output. This package is not for functions that implement advanced statistical procedures. It is a light-weight package for simple functions that do simple tasks conveniently, with as few dependencies as possible.
Estimate the parameters of multivariate endogenous switching and sample selection models using methods described in Newey (2009) <doi:10.1111/j.1368-423X.2008.00263.x>, E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>, E. Kossova, L. Kupriianova, B. Potanin (2020) <https://ideas.repec.org/a/ris/apltrx/0391.html> and E. Kossova, B. Potanin (2022) <https://ideas.repec.org/a/ris/apltrx/0455.html>.
It computes the solutions to a generic stochastic growth model for a given set of user supplied parameters. It includes the solutions to the model, plots of the solution, a summary of the features of the model, a function that covers different types of consumption preferences, and a function that computes the moments of a Markov process. Merton, Robert C (1971) <doi:10.1016/0022-0531(71)90038-X>, Tauchen, George (1986) <doi:10.1016/0165-1765(86)90168-0>, Wickham, Hadley (2009, ISBN:978-0-387-98140-6 ).
This package provides tools for the stochastic simulation of effectiveness scores to mitigate data-related limitations of Information Retrieval evaluation research, as described in Urbano and Nagler (2018) <doi:10.1145/3209978.3210043>. These tools include: fitting, selection and plotting distributions to model system effectiveness, transformation towards a prespecified expected value, proxy to fitting of copula models based on these distributions, and simulation of new evaluation data from these distributions and copula models.
This package provides basic functions that support an implementation of (discrete) choice experiments (CEs). CEs is a question-based survey method measuring people's preferences for goods/services and their characteristics. Refer to Louviere et al. (2000) <doi:10.1017/CBO9780511753831> for details on CEs, and Aizaki (2012) <doi:10.18637/jss.v050.c02> for the package.
Stepwise regression is a statistical technique used for model selection. This package streamlines stepwise regression analysis by supporting multiple regression types(linear, Cox, logistic, Poisson, Gamma, and negative binomial), incorporating popular selection strategies(forward, backward, bidirectional, and subset), and offering essential metrics. It enables users to apply multiple selection strategies and metrics in a single function call, visualize variable selection processes, and export results in various formats. StepReg offers a data-splitting option to address potential issues with invalid statistical inference and a randomized forward selection option to avoid overfitting. We validated StepReg's accuracy using public datasets within the SAS software environment. For an interactive web interface, users can install the companion StepRegShiny package.
This package provides indices and tools for directed acyclic graphs (DAGs), particularly DAG representations of intermittent streams. A detailed introduction to the package can be found in the publication: "Non-perennial stream networks as directed acyclic graphs: The R-package streamDAG" (Aho et al., 2023) <doi:10.1016/j.envsoft.2023.105775>, and in the introductory package vignette.
Generates, plays, and solves Sudoku puzzles. The GUI playSudoku() needs package "tkrplot" if you are not on Windows.
This package provides a dynamic timer control (DTC) is a shiny widget that enables time-based processes in applications. It allows users to execute these processes manually in individual steps or at customizable speeds. The timer can be paused, resumed, or restarted. This control is particularly well-suited for simulations, animations, countdowns, or interactive visualizations.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
The focus is on simulating and modeling families with founders drawn from a structured population (for example, with different ancestries or other potentially non-family relatedness), in contrast to traditional pedigree analysis that treats all founders as equally unrelated. Main function simulates a random pedigree for many generations, avoiding close relatives, pairing closest individuals according to a 1D geography and their randomly-drawn sex, and with variable children sizes to result in a target population size per generation. Auxiliary functions calculate kinship matrices, admixture matrices, and draw random genotypes across arbitrary pedigree structures starting from the corresponding founder values. The code is built around the plink FAM table format for pedigrees. Described in Yao and Ochoa (2022) <doi:10.1101/2022.03.25.485885>.
Computationally efficient tools for high dimensional predictive modeling (regression and classification). SAM is short for sparse additive modeling, and adopts the computationally efficient basis spline technique. We solve the optimization problems by various computational algorithms including the block coordinate descent algorithm, fast iterative soft-thresholding algorithm, and newton method. The computation is further accelerated by warm-start and active-set tricks.
Sample size estimation for bio-equivalence trials is supported through a simulation-based approach that extends the Two One-Sided Tests (TOST) procedure. The methodology provides flexibility in hypothesis testing, accommodates multiple treatment comparisons, and accounts for correlated endpoints. Users can model complex trial scenarios, including parallel and crossover designs, intra-subject variability, and different equivalence margins. Monte Carlo simulations enable accurate estimation of power and type I error rates, ensuring well-calibrated study designs. The statistical framework builds on established methods for equivalence testing and multiple hypothesis testing in bio-equivalence studies, as described in Schuirmann (1987) <doi:10.1007/BF01068419>, Mielke et al. (2018) <doi:10.1080/19466315.2017.1371071>, Shieh (2022) <doi:10.1371/journal.pone.0269128>, and Sozu et al. (2015) <doi:10.1007/978-3-319-22005-5>. Comprehensive documentation and vignettes guide users through implementation and interpretation of results.
An interface to the Python package stanza <https://stanfordnlp.github.io/stanza/index.html>. stanza is a Python NLP library for many human languages. It contains support for running various accurate natural language processing tools on 60+ languages.