Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fits linear regression models on datasets residing in SQL databases without pulling data into R memory. Computes sufficient statistics inside the database engine via a single aggregation query and solves the normal equations in R.
This package contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
This package provides estimation of simultaneous bootstrap and asymptotic confidence intervals for diversity indices, namely the Shannon and the Simpson index. Several pre--specified multiple comparison types are available to choose. Further user--defined contrast matrices are applicable. In addition, simboot estimates adjusted as well as unadjusted p--values for two of the three proposed bootstrap methods. Further simboot allows for comparing biological diversities of two or more groups while simultaneously testing a user-defined selection of Hill numbers of orders q, which are considered as appropriate and useful indices for measuring diversity.
This package produces various measures of expected treatment effect heterogeneity under an assumption of homogeneity across subgroups. Graphical presentations are created to compare these expected differences with the observed differences.
Explore synesthesia consistency test data, calculate consistency scores, and classify participant data as valid or invalid.
Determine sample sizes, draw samples, and conduct data analysis using data frames. It specifically enables you to determine simple random sample sizes, stratified sample sizes, and complex stratified sample sizes using a secondary variable such as population; draw simple random samples and stratified random samples from sampling data frames; determine which observations are missing from a random sample, missing by strata, duplicated within a dataset; and perform data analysis, including proportions, margins of error and upper and lower bounds for simple, stratified and cluster sample designs.
Interfaces the stepcount Python module <https://github.com/OxWearables/stepcount> to estimate step counts and other activities from accelerometry data.
This package provides a comprehensive toolkit for mining, analyzing, and visualizing scientific literature in sport science domains. Provides functions for retrieving abstracts from Scopus', preprocessing text data, performing advanced topic modeling using Latent Dirichlet Allocation ('LDA'), Structural Topic Models ('STM'), and Correlated Topic Models ('CTM'), and creating publication-ready visualizations including keyword co-occurrence networks and topic trends. For methodological details see Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993> for LDA', Roberts et al. (2014) <doi:10.1111/ajps.12103> for STM', and Blei and Lafferty (2007) <doi:10.1214/07-AOAS114> for CTM'.
Takes a list of character strings and forms an adjacency matrix for the times the specified characters appear together in the strings provided. For use in social network analysis and data wrangling. Simple package, comprised of three functions.
Make R data available in Web-based virtual reality experiences for immersive, cross-platform data visualizations. Includes the gg-aframe JavaScript package for a Grammar of Graphics declarative HTML syntax to create 3-dimensional data visualizations with Mozilla A-Frame <https://aframe.io>.
Extract glyph information from font data, and translate the outline curves to flattened paths or tessellated polygons. The converted data is returned as a data.frame in easy-to-plot format.
Maximum likelihood tools to fit and compare models of species abundance distributions and of species rank-abundance distributions.
Artificial selection through selective breeding is an efficient way to induce changes in traits of interest in experimental populations. This package (sra) provides a set of tools to analyse artificial-selection response datasets. The data typically feature for several generations the average value of a trait in a population, the variance of the trait, the population size and the average value of the parents that were chosen to breed. Sra implements two families of models aiming at describing the dynamics of the genetic architecture of the trait during the selection response. The first family relies on purely descriptive (phenomenological) models, based on an autoregressive framework. The second family provides different mechanistic models, accounting e.g. for inbreeding, mutations, genetic and environmental canalization, or epistasis. The parameters underlying the dynamics of the time series are estimated by maximum likelihood. The sra package thus provides (i) a wrapper for the R functions mle() and optim() aiming at fitting in a convenient way a predetermined set of models, and (ii) some functions to plot and analyze the output of the models.
This package provides methods that use flexible variants of multidimensional scaling (MDS) which incorporate parametric nonlinear distance transformations and trade-off the goodness-of-fit fit with structure considerations to find optimal hyperparameters, also known as structure optimized proximity scaling (STOPS) (Rusch, Mair & Hornik, 2023,<doi:10.1007/s11222-022-10197-w>). The package contains various functions, wrappers, methods and classes for fitting, plotting and displaying different 1-way MDS models with ratio, interval, ordinal optimal scaling in a STOPS framework. These cover essentially the functionality of the package smacofx, including Torgerson (classical) scaling with power transformations of dissimilarities, SMACOF MDS with powers of dissimilarities, Sammon mapping with powers of dissimilarities, elastic scaling with powers of dissimilarities, spherical SMACOF with powers of dissimilarities, (ALSCAL) s-stress MDS with powers of dissimilarities, r-stress MDS, MDS with powers of dissimilarities and configuration distances, elastic scaling powers of dissimilarities and configuration distances, Sammon mapping powers of dissimilarities and configuration distances, power stress MDS (POST-MDS), approximate power stress, Box-Cox MDS, local MDS, Isomap, curvilinear component analysis (CLCA), curvilinear distance analysis (CLDA) and sparsified (power) multidimensional scaling and (power) multidimensional distance analysis (experimental models from smacofx influenced by CLCA). All of these models can also be fit by optimizing over hyperparameters based on goodness-of-fit fit only (i.e., no structure considerations). The package further contains functions for optimization, specifically the adaptive Luus-Jaakola algorithm and a wrapper for Bayesian optimization with treed Gaussian process with jumps to linear models, and functions for various c-structuredness indices. Hyperparameter optimization can be done with a number of techniques but we recommend either Bayesian optimization or particle swarm. For using "Kriging", users need to install a version of the archived DiceOptim R package.
Calculates the power and sample size based on the difference in Restricted Mean Survival Time.
This package implements the S-type estimators, novel robust estimators for general linear regression models, addressing challenges such as outlier contamination and leverage points. This package introduces robust regression techniques to provide a robust alternative to classical methods and includes diagnostic tools for assessing model fit and performance. The methodology is based on the study, "Comparison of the Robust Methods in the General Linear Regression Model" by Sazak and Mutlu (2023). This package is designed for statisticians and applied researchers seeking advanced tools for robust regression analysis.
Import data from the STATcube REST API or from the open data portal of Statistics Austria. This package includes a client for API requests as well as parsing utilities for data which originates from STATcube'. Documentation about STATcubeR is provided by several vignettes included in the package as well as on the public pkgdown page at <https://statistikat.github.io/STATcubeR/>.
Computes bounds and sensitivity parameters as part of sensitivity analysis for selection bias. Different bounds are provided: the SV (Smith and VanderWeele), sharp bounds, AF (assumption-free) bound, GAF (generalized AF), and CAF (counterfactual AF) bounds. The calculation of the sensitivity parameters for the SV, sharp, and GAF bounds assume an additional dependence structure in form of a generalized M-structure. The bounds can be calculated for any structure as long as the necessary assumptions hold. See Smith and VanderWeele (2019) <doi:10.1097/EDE.0000000000001032>, Zetterstrom, Sjölander, and Waernabum (2025) <doi:10.1177/09622802251374168>, Zetterstrom and Waernbaum (2022) <doi:10.1515/em-2022-0108>, and Zetterstrom (2024) <doi:10.1515/em-2023-0033>.
Perform common dendrometry operations such as inventory preparing, and inventory data analysis.
Generate Stochastic Branching Networks ('SBNs'). Used to model the branching structure of rivers.
Linkage disequilibrium visualizations of up to several hundreds of single nucleotide polymorphisms (SNPs), annotated with chromosomic positions and gene names. Two types of plots are available for small numbers of SNPs (<40) and for large numbers (tested up to 500). Both can be extended by combining other ggplots, e.g. association studies results, and functions enable to directly visualize the effect of SNP selection methods, as minor allele frequency filtering and TagSNP selection, with a second correlation heatmap. The SNPs correlations are computed on Genotype Data objects from the GWASTools package using the SNPRelate package, and the plots are customizable ggplot2 and gtable objects and are annotated using the biomaRt package. Usage is detailed in the vignette with example data and results from up to 500 SNPs of 1,200 scans are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>.
An interactive shiny application to assist in determining sample sizes for common survey designs such as simple random sampling', stratified sampling', and cluster sampling'. It includes formulas, helper calculators, and illustrative examples.
Selective sweep is a biological phenomenon in which genetic variation between neighboring beneficial mutant alleles is swept away due to the effect of genetic hitchhiking. Detection of selective sweep is not well acquainted as well as it is a laborious job. This package is a user friendly approach for detecting selective sweep in genomic regions. It uses a Random Forest based machine learning approach to predict selective sweep from VCF files as an input. Input of this function, train data and new data, can be computed using the project <https://github.com/AbhikSarkar1999/SweepDiscovery> in GitHub'. This package has been developed by using the concept of Pavlidis and Alachiotis (2017) <doi:10.1186/s40709-017-0064-0>.
This package provides a function for the estimation of parameters in a binary regression with the skew-probit link function. Naive MLE, Jeffrey type of prior and Cauchy prior type of penalization are implemented, as described in DongHyuk Lee and Samiran Sinha (2019+) <doi:10.1080/00949655.2019.1590579>.