Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a major challenge in estimating treatment decision rules from a randomized clinical trial dataset with covariates measured at baseline lies in detecting relatively small treatment effect modification-related variability (i.e., the treatment-by-covariates interaction effects on treatment outcomes) against a relatively large non-treatment-related variability (i.e., the main effects of covariates on treatment outcomes). The class of Single-Index Models with Multiple-Links is a novel single-index model specifically designed to estimate a single-index (a linear combination) of the covariates associated with the treatment effect modification-related variability, while allowing a nonlinear association with the treatment outcomes via flexible link functions. The models provide a flexible regression approach to developing treatment decision rules based on patients data measured at baseline. We refer to Park, Petkova, Tarpey, and Ogden (2020) <doi:10.1016/j.jspi.2019.05.008> and Park, Petkova, Tarpey, and Ogden (2020) <doi:10.1111/biom.13320> (that allows an unspecified X main effect) for detail of the method. The main function of this package is simml().
Implementation of a shiny app to easily compare supervised machine learning model performances. You provide the data and configure each model parameter directly on the shiny app. Different supervised learning algorithms can be tested either on Spark or H2O frameworks to suit your regression and classification tasks. Implementation of available machine learning models on R has been done by Lantz (2013, ISBN:9781782162148).
This package provides tools for sample survey planning, including sample size calculation, estimation of expected precision for the estimates of totals, and calculation of optimal sample size allocation.
Two versions of sample variance plots, Sv-plot1 and Sv-plot2, will be provided illustrating the squared deviations from sample variance. Besides indicating the contribution of squared deviations for the sample variability, these plots are capable of detecting characteristics of the distribution such as symmetry, skewness and outliers. A remarkable graphical method based on Sv-plot2 can determine the decision on testing hypotheses over one or two population means. In sum, Sv-plots will be appealing visualization tools. Complete description of this methodology can be found in the article, Wijesuriya (2020) <doi:10.1080/03610918.2020.1851716>.
This package provides a facility to generate balanced semi-Latin rectangles with any cell size (preferably up to ten) with given number of treatments, see Uto, N.P. and Bailey, R.A. (2020). "Balanced Semi-Latin rectangles: properties, existence and constructions for block size two". Journal of Statistical Theory and Practice, 14(3), 1-11, <doi:10.1007/s42519-020-00118-3>. It also provides facility to generate partially balanced semi-Latin rectangles for cell size 2, 3 and 4 for any number of treatments.
Characterize daily stream discharge and water quality data and subsample water quality data. Provide dates, discharge, and water quality measurements and streamsampler can find gaps, get summary statistics, and subsample according to common stream sampling protocols. Stream sampling protocols are described in Lee et al. (2016) <doi:10.1016/j.jhydrol.2016.08.059> and Lee et al. (2019) <doi:10.3133/sir20195084>.
Traditional model evaluation metrics fail to capture model performance under less than ideal conditions. This package employs techniques to evaluate models "under-stress". This includes testing models extrapolation ability, or testing accuracy on specific sub-samples of the overall model space. Details describing stress-testing methods in this package are provided in Haycock (2023) <doi:10.26076/2am5-9f67>. The other primary contribution of this package is provided to R users access to the Python library PyCaret <https://pycaret.org/> for quick and easy access to auto-tuned machine learning models.
Given a coro asynchronous generator instance that produces text, write that text into a document selection in RStudio and Positron'. This is particularly helpful for streaming large language model responses into the user's editor.
This package provides a consistent, semi-supervised, non-parametric survival curve estimator optimized for efficient use of Electronic Health Record (EHR) data with a limited number of current status labels. See van der Laan and Robins (1997) <doi:10.2307/2670119>.
This package provides intuitive functions for caching R objects, encouraging reproducible, restartable, and distributed R analysis. The user selects a location to store caches, and then provides nothing more than a cache name and instructions (R code) for how to produce the R object. Also provides some advanced options like environment assignments, recreating or reloading caches, and cluster compute bindings (using the batchtools package) making it flexible enough for use in large-scale data analysis projects.
Provide model averaging-based approaches that can be used to predict personalized survival probabilities. The key underlying idea is to approximate the conditional survival function using a weighted average of multiple candidate models. Two scenarios of candidate models are allowed: (Scenario 1) partial linear Cox model and (Scenario 2) time-varying coefficient Cox model. A reference of the underlying methods is Li and Wang (2023) <doi:10.1016/j.csda.2023.107759>.
This package provides interactive plotting for mathematical models of infectious disease spread. Users can choose from a variety of common built-in ordinary differential equation (ODE) models (such as the SIR, SIRS, and SIS models), or create their own. This latter flexibility allows shinySIR to be applied to simple ODEs from any discipline. The package is a useful teaching tool as students can visualize how changing different parameters can impact model dynamics, with minimal knowledge of coding in R. The built-in models are inspired by those featured in Keeling and Rohani (2008) <doi:10.2307/j.ctvcm4gk0> and Bjornstad (2018) <doi:10.1007/978-3-319-97487-3>.
Work with containers over the Docker API. Rather than using system calls to interact with a docker client, using the API directly means that we can receive richer information from docker. The interface in the package is automatically generated using the OpenAPI (a.k.a., swagger') specification, and all return values are checked in order to make them type stable.
This package provides a pipeline for estimating the stellar age, mass, and radius given observational effective temperature, [Fe/H], and astroseismic parameters. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models, as described in Valle et al. (2014) <doi:10.1051/0004-6361/201322210>.
The developed function is designed for the generation of spatial grids based on user-specified longitude and latitude coordinates. The function first validates the input longitude and latitude values, ensuring they fall within the appropriate geographic ranges. It then creates a polygon from the coordinates and determines the appropriate Universal Transverse Mercator zone based on the provided hemisphere and longitude values. Subsequently, transforming the input Shapefile to the Universal Transverse Mercator projection when necessary. Finally, a spatial grid is generated with the specified interval and saved as a Shapefile. For method details see, Brus,D.J.(2022).<DOI:10.1201/9781003258940>. The function takes into account crucial parameters such as the hemisphere (north or south), desired grid interval, and the output Shapefile path. The developed function is an efficient tool, simplifying the process of empty spatial grid generation for applications such as, geo-statistical analysis, digital soil mapping product generation, etc. Whether for environmental studies, urban planning, or any other geo-spatial analysis, this package caters to the diverse needs of users working with spatial data, enhancing the accessibility and ease of spatial data processing and visualization.
Users can build and test customized quantitative trading strategies. Some quantitative trading strategies are already implemented, e.g. various moving-average filters with trend following approaches. The implemented class called "Strategy" allows users to access several methods to analyze performance figures, plots and backtest the strategies. Furthermore, custom strategies can be added, a generic template is available. The custom strategies require a certain input and output so they can be called from the Strategy-constructor.
This package provides a framework for data stream modeling and associated data mining tasks such as clustering and classification. The development of this package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912. Hahsler et al (2017) <doi:10.18637/jss.v076.i14>.
This package implements exact, normally approximated, and sampling-based sensitivity analysis for observational studies with contingency tables. Includes exact (kernel-based), normal approximation, and sequential importance sampling (SIS) methods using Rcpp for computational efficiency. The methods build upon the framework introduced in Rosenbaum (2002) <doi:10.1007/978-1-4757-3692-2> and the generalized design sensitivity framework developed by Chiu (2025) <doi:10.48550/arXiv.2507.17207>.
This package provides a framework for performing simulations such as those common in methodological statistics papers. The design principles of this package are described in greater depth in Bien, J. (2016) "The simulator: An Engine to Streamline Simulations," which is available at <arXiv:1607.00021>.
This package provides a lightweight tool that provides a reproducible workflow for selecting and executing appropriate statistical analysis in one-way or two-way experimental designs. The package automatically checks for data normality, conducts parametric (ANOVA) or non-parametric (Kruskal-Wallis) tests, performs post-hoc comparisons with Compact Letter Displays (CLD), and generates publication-ready boxplots, faceted plots, and heatmaps. It is designed for researchers seeking fast, automated statistical summaries and visualization. Based on established statistical methods including Shapiro and Wilk (1965) <doi:10.2307/2333709>, Kruskal and Wallis (1952) <doi:10.1080/01621459.1952.10483441>, Tukey (1949) <doi:10.2307/3001913>, Fisher (1925) <ISBN:0050021702>, and Wickham (2016) <ISBN:978-3-319-24277-4>.
This package provides convenience functions to replace hyphen-minuses (ASCII 45) with proper minus signs (Unicode character 2212). The true minus matches the plus symbol in width, line thickness, and height above the baseline. It was designed for mathematics, looks better in presentation, and is understood properly by screen readers.
Generate the same random numbers in R and Python.
Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet. Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Resources, 13(5), 946-952. <doi:10.1111/1755-0998.12129> for the appropriate citation and user manual. Thank you in advance.
Given a likelihood provided by the user, this package applies it to a given matrix dataset in order to find change points in the data that maximize the sum of the likelihoods of all the segments. This package provides a handful of algorithms with different time complexities and assumption compromises so the user is able to choose the best one for the problem at hand. The implementation of the segmentation algorithms in this package are based on the paper by Bruno M. de Castro, Florencia Leonardi (2018) <arXiv:1501.01756>. The Berlin weather sample dataset was provided by Deutscher Wetterdienst <https://dwd.de/>. You can find all the references in the Acknowledgments section of this package's repository via the URL below.