Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides easy to use functions to create all-sky grid plots of widely used astronomical coordinate systems (equatorial, ecliptic, galactic) and scatter plots of data on any of these systems including on-the-fly system conversion. It supports any type of spherical projection to the plane defined by the mapproj package.
Build custom Europe SpatialPolygonsDataFrame, if you don't know what is a SpatialPolygonsDataFrame see SpatialPolygons() in sp', by example for mapLayout() in antaresViz'. Antares is a powerful software developed by RTE to simulate and study electric power systems (more information about Antares here: <https://antares-simulator.org/>).
This package provides a dynamic timer control (DTC) is a shiny widget that enables time-based processes in applications. It allows users to execute these processes manually in individual steps or at customizable speeds. The timer can be paused, resumed, or restarted. This control is particularly well-suited for simulations, animations, countdowns, or interactive visualizations.
This is an all-encompassing suite to facilitate the simulation of so-called quantities of interest by way of a multivariate normal distribution of the regression model's coefficients and variance-covariance matrix.
This package provides a collection of functions for processing raw data from Stream Temperature, Intermittency, and Conductivity (STIC) loggers. STICr (pronounced "sticker") includes functions for tidying, calibrating, classifying, and doing quality checks on data from STIC sensors. Some package functionality is described in Wheeler/Zipper et al. (2023) <doi:10.31223/X5636K>.
Analysis of multi environment data of plant breeding experiments following the analyses described in Malosetti, Ribaut, and van Eeuwijk (2013), <doi:10.3389/fphys.2013.00044>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris. Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
Generate syntax for use with the sparklines package for LaTeX.
Routine that allows the user to run several goodness-of-fit tests. It also combines the tests and returns a properly adjusted family-wise p value. Details can be found in <arXiv:2007.04727>.
An introduction to a couple of novel predictive variable selection methods for generalised boosted regression modeling (gbm). They are based on various variable influence methods (i.e., relative variable influence (RVI) and knowledge informed RVI (i.e., KIRVI, and KIRVI2)) that adopted similar ideas as AVI, KIAVI and KIAVI2 in the steprf package, and also based on predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) <doi:10.3390/geosciences9040180>. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017). <DOI: 10.13140/RG.2.2.27686.22085>.
This package provides you with easy, programmatic access to SRDP data.
Create mocked bindings to Shiny update functions within test function calls to automatically update input values. The mocked bindings simulate the communication between the server and UI components of a Shiny module in testServer().
This package provides a set of tools developed at Simularia for Simularia, to help preprocessing and post-processing of meteorological and air quality data.
Output colors used in literal vectors, palettes and plot objects (ggplot).
This package provides a specialized selection algorithm designed to align simulated fire perimeters with specific fire size distribution scenarios. The foundation of this approach lies in generating a vast collection of plausible simulated fires across a wide range of conditions, assuming a random pattern of ignition. The algorithm then assembles individual fire perimeters based on their specific probabilities of occurrence, e.g., determined by (i) the likelihood of ignition and (ii) the probability of particular fire-weather scenarios, including wind speed and direction. Implements the method presented in Rodrigues (2025a) <doi:10.5194/egusphere-egu25-8974>. Demo data and code examples can be found in Rodrigues (2025b) <doi:10.5281/zenodo.15282605>.
Several functions are provided for small area estimation at the area level using the hierarchical bayesian (HB) method with panel data under beta distribution for variable interest. This package also provides a dataset produced by data generation. The rjags package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators, which include the mean and the variation of the mean. For the reference, see Rao and Molina (2015, ISBN: 978-1-118-73578-7).
The computer program is an efficient igneous norm algorithm and rock classification system written in R but run as shiny app.
Penalized and non-penalized maximum likelihood estimation of smooth transition vector autoregressive models with various types of transition weight functions, conditional distributions, and identification methods. Constrained estimation with various types of constraints is available. Residual based model diagnostics, forecasting, simulations, counterfactual analysis, and computation of impulse response functions, generalized impulse response functions, generalized forecast error variance decompositions, as well as historical decompositions. See Heather Anderson, Farshid Vahid (1998) <doi:10.1016/S0304-4076(97)00076-6>, Helmut Lütkepohl, Aleksei Netšunajev (2017) <doi:10.1016/j.jedc.2017.09.001>, Markku Lanne, Savi Virolainen (2025) <doi:10.1016/j.jedc.2025.105162>, Savi Virolainen (2025) <doi:10.48550/arXiv.2404.19707>.
Implementations for two different Bayesian models of differential co-expression. scdeco.cop() fits the bivariate Gaussian copula model from Zichen Ma, Shannon W. Davis, Yen-Yi Ho (2023) <doi:10.1111/biom.13701>, while scdeco.pg() fits the bivariate Poisson-Gamma model from Zhen Yang, Yen-Yi Ho (2022) <doi:10.1111/biom.13457>.
Obtain parameters of Svensson's Method, including percentage agreement, systematic change and individual change. Also, the contingency table can be generated. Svensson's Method is a rank-invariant nonparametric method for the analysis of ordered scales which measures the level of change both from systematic and individual aspects. For the details, please refer to Svensson E. Analysis of systematic and random differences between paired ordinal categorical data [dissertation]. Stockholm: Almqvist & Wiksell International; 1993.
This package provides a comprehensive framework for quantifying the fundamental thermodynamic parameters of adsorption reactionsâ changes in the standard Gibbs free energy (delta G), enthalpy (delta H), and entropy (delta S)â is essential for understanding the spontaneity, heat effects, and molecular ordering associated with sorption processes. By analysing temperature-dependent equilibrium data, thermodynamic interpretation expands adsorption studies beyond conventional isotherm fitting, offering deeper insight into underlying mechanisms and surfaceâ solute interactions. Such an approach typically involves evaluating equilibrium coefficients across multiple temperatures and non-temperature treatments, deriving thermodynamic parameters using established thermodynamic relationships, and determining delta G as a temperature-specific indicator of adsorption favourability. This analytical pathway is widely applicable across environmental science, soil science, chemistry, materials science, and engineering, where reliable assessment of sorption behaviour is critical for examining contaminant retention, nutrient dynamics, and the behaviour of natural and engineered surfaces. By focusing specifically on thermodynamic inference, this framework complements existing adsorption isotherm-fitting packages such as âAdIsMFâ <https://CRAN.R-project.org/package=AdIsMF> <doi:10.32614/CRAN.package.AdIsMF>, and strengthens the scientific basis for interpreting adsorption energetics in both research and applied contexts. Details can be found in Roy et al. (2025) <doi:10.1007/s11270-025-07963-7>.
Assessment of the distributions of baseline continuous and categorical variables in randomised trials. This method is based on the Carlisle-Stouffer method with Monte Carlo simulations. It calculates p-values for each trial baseline variable, as well as combined p-values for each trial - these p-values measure how compatible are distributions of trials baseline variables with random sampling. This package also allows for graphically plotting the cumulative frequencies of computed p-values. Please note that code was partly adapted from Carlisle JB, Loadsman JA. (2017) <doi:10.1111/anae.13650>.
This package contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.
Fits complex parametric models using the method proposed by Cox and Kartsonaki (2012) without likelihoods.
Storm is a distributed real-time computation system. Similar to how Hadoop provides a set of general primitives for doing batch processing, Storm provides a set of general primitives for doing real-time computation. . Storm includes a "Multi-Language" (or "Multilang") Protocol to allow implementation of Bolts and Spouts in languages other than Java. This R extension provides implementations of utility functions to allow an application developer to focus on application-specific functionality rather than Storm/R communications plumbing.