_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-scouter 1.0.0
Propagated dependencies: r-ggpubr@0.6.2 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SCOUTer
Licenses: GPL 3
Build system: r
Synopsis: Simulate Controlled Outliers
Description:

Using principal component analysis as a base model, SCOUTer offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, SCOUTer returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).

r-simjoint 0.3.12
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SimJoint
Licenses: GPL 3
Build system: r
Synopsis: Simulate Joint Distribution
Description:

Simulate multivariate correlated data given nonparametric marginals and their joint structure characterized by a Pearson or Spearman correlation matrix. The simulator engages the problem from a purely computational perspective. It assumes no statistical models such as copulas or parametric distributions, and can approximate the target correlations regardless of theoretical feasibility. The algorithm integrates and advances the Iman-Conover (1982) approach <doi:10.1080/03610918208812265> and the Ruscio-Kaczetow iteration (2008) <doi:10.1080/00273170802285693>. Package functions are carefully implemented in C++ for squeezing computing speed, suitable for large input in a manycore environment. Precision of the approximation and computing speed both substantially outperform various CRAN packages to date. Benchmarks are detailed in function examples. A simple heuristic algorithm is additionally designed to optimize the joint distribution in the post-simulation stage. The heuristic demonstrated good potential of achieving the same level of precision of approximation without the enhanced Iman-Conover-Ruscio-Kaczetow. The package contains a copy of Permuted Congruential Generator.

r-semsfa 1.2
Propagated dependencies: r-np@0.60-18 r-moments@0.14.1 r-mgcv@1.9-4 r-iterators@1.0.14 r-gamlss@5.5-0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=semsfa
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Semiparametric Estimation of Stochastic Frontier Models
Description:

Semiparametric Estimation of Stochastic Frontier Models following a two step procedure: in the first step semiparametric or nonparametric regression techniques are used to relax parametric restrictions of the functional form representing technology and in the second step variance parameters are obtained by pseudolikelihood estimators or by method of moments.

r-schoenberg 2.0.3
Propagated dependencies: r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=schoenberg
Licenses: GPL 3+
Build system: r
Synopsis: Tools for 12-Tone Musical Composition
Description:

This package provides functions for creating and manipulating 12-tone (i.e., dodecaphonic) musical matrices using Arnold Schoenberg's (1923) serialism technique. This package can generate random 12-tone matrices and can generate matrices using a pre-determined sequence of notes.

r-sanzo 0.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jmaasch/sanzo
Licenses: GPL 3
Build system: r
Synopsis: Color Palettes Based on the Works of Sanzo Wada
Description:

Inspired by the art and color research of Sanzo Wada (1883-1967), his "Dictionary Of Color Combinations" (2011, ISBN:978-4861522475), and the interactive site by Dain M. Blodorn Kim <https://github.com/dblodorn/sanzo-wada>, this package brings Wada's color combinations to R for easy use in data visualizations. This package honors 60 of Wada's color combinations: 20 duos, 20 trios, and 20 quads.

r-sgee 0.6-0
Propagated dependencies: r-mvtnorm@1.3-3 r-copula@1.1-6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sgee
Licenses: GPL 3+
Build system: r
Synopsis: Stagewise Generalized Estimating Equations
Description:

Stagewise techniques implemented with Generalized Estimating Equations to handle individual, group, bi-level, and interaction selection. Stagewise approaches start with an empty model and slowly build the model over several iterations, which yields a path of candidate models from which model selection can be performed. This slow brewing approach gives stagewise techniques a unique flexibility that allows simple incorporation of Generalized Estimating Equations; see Vaughan, G., Aseltine, R., Chen, K., Yan, J., (2017) <doi:10.1111/biom.12669> for details.

r-spbayessurv 1.1.9
Propagated dependencies: r-survival@3.8-3 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mass@7.3-65 r-fields@17.1 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spBayesSurv
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Modeling and Analysis of Spatially Correlated Survival Data
Description:

This package provides several Bayesian survival models for spatial/non-spatial survival data: proportional hazards (PH), accelerated failure time (AFT), proportional odds (PO), and accelerated hazards (AH), a super model that includes PH, AFT, PO and AH as special cases, Bayesian nonparametric nonproportional hazards (LDDPM), generalized accelerated failure time (GAFT), and spatially smoothed Polya tree density estimation. The spatial dependence is modeled via frailties under PH, AFT, PO, AH and GAFT, and via copulas under LDDPM and PH. Model choice is carried out via the logarithm of the pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). See Zhou, Hanson and Zhang (2020) <doi:10.18637/jss.v092.i09>.

r-soniclength 1.4.7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sonicLength
Licenses: GPL 2+
Build system: r
Synopsis: Estimating Abundance of Clones from DNA Fragmentation Data
Description:

Estimate the abundance of cell clones from the distribution of lengths of DNA fragments (as created by sonication, whence `sonicLength'). The algorithm in "Estimating abundances of retroviral insertion sites from DNA fragment length data" by Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Bioinformatics; 2012 Mar 15;28(6):755-62 is implemented. The experimental setting and estimation details are described in detail there. Briefly, integration of new DNA in a host genome (due to retroviral infection or gene therapy) can be tracked using DNA sequencing, potentially allowing characterization of the abundance of individual cell clones bearing distinct integration sites. The locations of integration sites can be determined by fragmenting the host DNA (via sonication or fragmentase), breaking the newly integrated DNA at a known sequence, amplifying the fragments containing both host and integrated DNA, sequencing those amplicons, then mapping the host sequences to positions on the reference genome. The relative number of fragments containing a given position in the host genome estimates the relative abundance of cells hosting the corresponding integration site, but that number is not available and the count of amplicons per fragment varies widely. However, the expected number of distinct fragment lengths is a function of the abundance of cells hosting an integration site at a given position and a certain nuisance parameter. The algorithm implicitly estimates that function to estimate the relative abundance.

r-ssaforecast 0.1.1
Propagated dependencies: r-rssa@1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SSAforecast
Licenses: GPL 3
Build system: r
Synopsis: SSA Based Decomposition and Forecasting
Description:

Singular spectrum analysis (SSA) decomposes a time series into interpretable components like trends, oscillations, and noise without strict distributional and structural assumptions. For method details see Golyandina N, Zhigljavsky A (2013). <doi:10.1007/978-3-642-34913-3>.

r-sparsemdc 0.99.5
Propagated dependencies: r-foreach@1.5.2 r-dorng@1.8.6.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SparseMDC
Licenses: GPL 3
Build system: r
Synopsis: Implementation of SparseMDC Algorithm
Description:

This package implements the algorithm described in Barron, M., and Li, J. (Not yet published). This algorithm clusters samples from multiple ordered populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseMDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.

r-schumaker 1.2.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=schumaker
Licenses: Expat
Build system: r
Synopsis: Schumaker Shape-Preserving Spline
Description:

This is a shape preserving spline <doi:10.1137/0720057> which is guaranteed to be monotonic and concave or convex if the data is monotonic and concave or convex. It does not use any optimisation and is therefore quick and smoothly converges to a fixed point in economic dynamics problems including value function iteration. It also automatically gives the first two derivatives of the spline and options for determining behaviour when evaluated outside the interpolation domain.

r-sleepcycles 1.1.4
Propagated dependencies: r-viridis@0.6.5 r-stringr@1.6.0 r-reshape2@1.4.5 r-plyr@1.8.9 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SleepCycles
Licenses: GPL 3
Build system: r
Synopsis: Sleep Cycle Detection
Description:

Sleep cycles are largely detected according to the originally proposed criteria by Feinberg & Floyd (1979) <doi:10.1111/j.1469-8986.1979.tb02991.x> as described in Blume & Cajochen (2021) <doi:10.1016/j.mex.2021.101318>.

r-speakeasyr 0.1.8
Propagated dependencies: r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SpeakEasy-2/speakeasyR
Licenses: GPL 3+
Build system: r
Synopsis: Fast and Robust Multi-Scale Graph Clustering
Description:

This package provides a graph community detection algorithm that aims to be performant on large graphs and robust, returning consistent results across runs. SpeakEasy 2 (SE2), the underlying algorithm, is described in Chris Gaiteri, David R. Connell & Faraz A. Sultan et al. (2023) <doi:10.1186/s13059-023-03062-0>. The core algorithm is written in C', providing speed and keeping the memory requirements low. This implementation can take advantage of multiple computing cores without increasing memory usage. SE2 can detect community structure across scales, making it a good choice for biological data, which often has hierarchical structure. Graphs can be passed to the algorithm as adjacency matrices using base R matrices, the Matrix library, igraph graphs, or any data that can be coerced into a matrix.

r-sbtools 1.4.1
Propagated dependencies: r-mime@0.13 r-keyring@1.4.1 r-jsonlite@2.0.0 r-httr@1.4.7 r-curl@7.0.0 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/DOI-USGS/sbtools
Licenses: CC0
Build system: r
Synopsis: USGS ScienceBase Tools
Description:

This package provides tools for interacting with U.S. Geological Survey ScienceBase <https://www.sciencebase.gov> interfaces. ScienceBase is a data cataloging and collaborative data management platform. Functions included for querying ScienceBase, and creating and fetching datasets.

r-stepmetrics 1.0.3
Propagated dependencies: r-physicalactivity@0.2-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/jhmigueles/stepmetrics
Licenses: AGPL 3+
Build system: r
Synopsis: Calculate Step and Cadence Metrics from Wearable Data
Description:

This package provides functions to calculate step- and cadence-based metrics from timestamped accelerometer and wearable device data. Supports CSV and AGD files from ActiGraph devices, CSV files from Fitbit devices, and step counts derived with R package GGIR <https://github.com/wadpac/GGIR>, with automatic handling of epoch lengths from 1 to 60 seconds. Metrics include total steps, cadence peaks, minutes and steps in predefined cadence bands, and time and steps in moderate-to-vigorous physical activity (MVPA). Methods and thresholds are informed by the literature, e.g., Tudor-Locke and Rowe (2012) <doi:10.2165/11599170-000000000-00000>, Barreira et al. (2012) <doi:10.1249/MSS.0b013e318254f2a3>, and Tudor-Locke et al. (2018) <doi:10.1136/bjsports-2017-097628>. The package record is also available on Zenodo (2023) <doi:10.5281/zenodo.7858094>.

r-snsequate 1.3-5
Propagated dependencies: r-statmod@1.5.1 r-progress@1.2.3 r-plyr@1.8.9 r-moments@0.14.1 r-magic@1.6-1 r-knitr@1.50 r-equate@2.0.8 r-emdbook@1.3.14 r-ake@1.0.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.mat.uc.cl/~jorge.gonzalez/
Licenses: GPL 2+
Build system: r
Synopsis: Standard and Nonstandard Statistical Models and Methods for Test Equating
Description:

This package contains functions to perform various models and methods for test equating (Kolen and Brennan, 2014 <doi:10.1007/978-1-4939-0317-7> ; Gonzalez and Wiberg, 2017 <doi:10.1007/978-3-319-51824-4> ; von Davier et. al, 2004 <doi:10.1007/b97446>). It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.

r-sptotal 1.0.1
Propagated dependencies: r-viridis@0.6.5 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://highamm.github.io/sptotal/index.html
Licenses: GPL 2
Build system: r
Synopsis: Predicting Totals and Weighted Sums from Spatial Data
Description:

This package performs predictions of totals and weighted sums, or finite population block kriging, on spatial data using the methods in Ver Hoef (2008) <doi:10.1007/s10651-007-0035-y>. The primary outputs are an estimate of the total, mean, or weighted sum in the region, an estimated prediction variance, and a plot of the predicted and observed values. This is useful primarily to users with ecological data that are counts or densities measured on some sites in a finite area of interest. Spatial prediction for the total count or average density in the entire region can then be done using the functions in this package.

r-siconvr 0.0.1
Propagated dependencies: r-tibble@3.3.0 r-magrittr@2.0.4 r-httr@1.4.7 r-dplyr@1.1.4 r-data-table@1.17.8 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/meirelesff/siconvr
Licenses: GPL 3+
Build system: r
Synopsis: Fetch Data from Plataforma +Brasil (SICONV)
Description:

Fetch data on targeted public investments from Plataforma +Brasil (SICONV) <http://plataformamaisbrasil.gov.br/>, the responsible system for requests, execution, and monitoring of federal discretionary transfers in Brazil.

r-spmaps 0.5.0
Propagated dependencies: r-sp@2.2-0 r-sf@1.0-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rte-antares-rpackage/spMaps
Licenses: GPL 2+ FSDG-compatible
Build system: r
Synopsis: Europe SpatialPolygonsDataFrame Builder
Description:

Build custom Europe SpatialPolygonsDataFrame, if you don't know what is a SpatialPolygonsDataFrame see SpatialPolygons() in sp', by example for mapLayout() in antaresViz'. Antares is a powerful software developed by RTE to simulate and study electric power systems (more information about Antares here: <https://antares-simulator.org/>).

r-satres 1.1.1
Propagated dependencies: r-terra@1.8-86 r-snakecase@0.11.1 r-sf@1.0-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://josesamos.github.io/satres/
Licenses: Expat
Build system: r
Synopsis: Grouping Satellite Bands by Spectral and Spatial Resolution
Description:

Given raster files directly downloaded from various websites, it generates a raster structure where it merges them if they are tiles of the same scene and classifies them according to their spectral and spatial resolution for easy access by name.

r-soundexbr 1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SoundexBR
Licenses: GPL 2+
Build system: r
Synopsis: Phonetic-Coding for Portuguese
Description:

The SoundexBR package provides an algorithm for decoding names into phonetic codes, as pronounced in Portuguese. The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling. The algorithm mainly encodes consonants; a vowel will not be encoded unless it is the first letter. The soundex code resultant consists of a four digits long string composed by one letter followed by three numerical digits: the letter is the first letter of the name, and the digits encode the remaining consonants.

r-ssm 1.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/peterrobertcurtis/SSM
Licenses: GPL 3
Build system: r
Synopsis: Fit and Analyze Smooth Supersaturated Models
Description:

This package creates an S4 class "SSM" and defines functions for fitting smooth supersaturated models, a polynomial model with spline-like behaviour. Functions are defined for the computation of Sobol indices for sensitivity analysis and plotting the main effects using FANOVA methods. It also implements the estimation of the SSM metamodel error using a GP model with a variety of defined correlation functions.

r-slidingwindows 0.2.0
Propagated dependencies: r-tsentropies@0.9 r-performanceanalytics@2.0.8 r-nonlineartseries@0.3.1 r-dcca@0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/efguedes/SlidingWindows
Licenses: GPL 3
Build system: r
Synopsis: Methods for Time Series Analysis
Description:

This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA exponent), GUEDES et al. (2019) <doi:10.1016/j.physa.2019.04.132> , Detrended cross-correlation coefficient (RHODCCA), GUEDES & ZEBENDE (2019) <doi:10.1016/j.physa.2019.121286>, DMCA cross-correlation coefficient and Detrended multiple cross-correlation coefficient (DMC), GUEDES & SILVA-FILHO & ZEBENDE (2018) <doi:10.1016/j.physa.2021.125990>, both with sliding windows approach.

r-scspatialsim 0.1.3.4
Propagated dependencies: r-tidyr@1.3.1 r-spatstat-random@3.4-3 r-spatstat-geom@3.6-1 r-proxy@0.4-27 r-pbmcapply@1.5.1 r-magrittr@2.0.4 r-ggpubr@0.6.2 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/FridleyLab/scSpatialSIM
Licenses: Expat
Build system: r
Synopsis: Point Pattern Simulator for Spatial Cellular Data
Description:

Single cell resolution data has been valuable in learning about tissue microenvironments and interactions between cells or spots. This package allows for the simulation of this level of data, be it single cell or â spotsâ , in both a univariate (single metric or cell type) and bivariate (2 or more metrics or cell types) ways. As more technologies come to marker, more methods will be developed to derive spatial metrics from the data which will require a way to benchmark methods against each other. Additionally, as the field currently stands, there is not a gold standard method to be compared against. We set out to develop an R package that will allow users to simulate point patterns that can be biologically informed from different tissue domains, holes, and varying degrees of clustering/colocalization. The data can be exported as spatial files and a summary file (like HALO'). <https://github.com/FridleyLab/scSpatialSIM/>.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283